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Abstract—Face recognition algorithms are generally trained
for matching high resolution images and they perform well for
similar resolution test data. However, the performance of such
systems degrade when a low resolution face image captured in un-
constrained settings such as videos from cameras in a surveillance
scenario are matched with high resolution gallery images. The
primary challenge here is to extract discriminating features from
limited biometric content in low resolution images and match it
to information rich high resolution face images. The problem of
cross-resolution face matching is further alleviated when there
is limited labeled positive data for training face recognition
algorithms. In this paper, the problem of cross-resolution face
matching is addressed where low resolution images are matched
with high resolution gallery. A co-transfer learning framework
is proposed which is a cross-pollination of transfer learning
and co-training paradigms and is applied for cross-resolution
face matching. The transfer learning component transfers the
knowledge that is learnt while matching high resolution face
images during training for matching low resolution probe images
with high resolution gallery during testing. On the other hand,
co-training component facilitates this transfer of knowledge by
assigning pseudo labels to unlabeled probe instances in the
target domain. Amalgamation of these two paradigms in the
proposed ensemble framework enhances the performance of
cross-resolution face recognition. Experiments on multiple face
databases show the efficacy of the proposed ensemble based
co-transfer learning algorithm as compared to other existing
algorithms and a commercial system. In addition, several high
profile real world cases have been used to demonstrate the
usefulness of the proposed approach in addressing the tough
challenges.

Index Terms—Face recognition, cross resolution, transfer
learning, co-training, co-transfer learning.

I. INTRODUCTION

It is generally believed that face recognition by computers
is a solved problem in many scenarios such as user centric ap-
plications including face tagging in Google Picasa, Facebook
and screen/device unlocking in Android and Windows-based
systems. While significant advances have been made in last
two decades, unconstrained face recognition is yet to benefit
from these advances to be useful in real world applications.
One such example is face recognition in low resolution surveil-
lance images. With advancements in technology, surveillance
cameras now have a profound presence and are widely used in
security and law enforcement applications. There are several

H.S. Bhatt, R. Singh,and M. Vatsa are with the Indraprastha Institute
of Information Technology (IIIT) Delhi, India, e-mail: {himanshub, rsingh,
mayank } @iiitd.ac.in.

N.K. Ratha is with IBM, T.J. Watson Research Center, USA, email:
ratha@us.ibm.com.

instances where surveillance videos have helped agencies in
apprehending individuals who have committed crime or iden-
tify individuals with the intent to commit crime. For example,
in 2005 subway bomb blasts in London [1], CCTV footage
helped law enforcement officers in identifying the bombers.
In 2008 Mumbai terrorist attacks [2], surveillance cameras
installed at different locations (CST railway station, Taj Palace,
and Trident hotels) helped the agencies to track the activities
of terrorists and later identify them. In the 2010 car bomb
case at Times Square [3], the surveillance footage captured an
unidentified individual leaving the car with explosives. Later,
widespread distribution and manual investigation of the video
helped the investigating agencies to apprehend the individual.
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Fig. 1. TIllustrating the difference in matching (a) low resolution and high
resolution images, (b) two high resolution and low resolution images.

In all these cases, surveillance cameras could not foil the
terrorist attacks, however, they served as the primary evidence
in leading the investigation and also recognizing the individu-
als at the end. It is therefore desirable to build a system where
surveillance cameras coupled with a face recognition algorithm
can be used to automatically identify individuals from a
watch-list. Along with the challenges of pose, expression,
illumination [4], aging [5], disguise [6], [7], and plastic surgery
[8], [9] in face recognition, matching a watch-list photograph
to an image obtained from surveillance camera also requires
the capability of matching across resolution. For example,
the watch-list photograph could be a high resolution image
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Fig. 2. Illustrates the challenge in matching low resolution images when
coupled with other covariates. Low resolution challenge (a) alone, (b) with
pose, (c) with illumination, and (d) with expression.

whereas the surveillance camera images are generally low
resolution images. As shown in Fig. 1, even if both the images
are frontal, the information content in both the images could
be significantly different. The presence of pose, illumination,
and expression along with different resolution could further
exacerbate the problem, as shown in Fig. 2.

The conditions in which a face recognition algorithm is
trained are referred to as the source domain where the avail-
ability of large training data helps the algorithm to efficiently
learn the task. In the source domain, face recognition algo-
rithms are trained to match high resolution images. However,
for surveillance applications, the probe data i.e., the rarget
domain, comprises low resolution face images and the gallery
contains high resolution face images. Gallery represents im-
ages in the database and probe represents the query images.
Source domain refers to scenario where both gallery and probe
images are high resolution images while target domain repre-
sents scenario where gallery is always of higher resolution than
the probe image. Under these variations, the performance of
a biometric system degrades because it is unable to efficiently
utilize the knowledge learned in the source domain and there
is a scarcity of labeled low resolution data that can be used
for training the algorithms. Obtaining sufficient labels for the
target data is time consuming, requires human effort, and very
expensive. However, there is an abundance of unlabeled low
resolution data in target domain during testing.

In our preliminary work [18], we made this observation
and formulated the problem of cross-resolution face matching
where sufficient labeled data is available in source domain
and only a few labeled instances are available from the
target domain. This research extends the prior work [18] and
proposes a generalized co-transfer learning (CTL) framework
which is a cross-pollination of transfer learning [19] and co-
training [20]. The framework integrates transfer learning and
co-training in a non-separable manner to efficiently transfer
the knowledge from the source domain to the target domain
with sequentially available unlabeled instances from the target
domain:

o transfer learning is used to leverage the knowledge

learned in the source domain for efficiently matching low
resolution probes with high resolution gallery in the target
domain.

e co-training is used to enable transfer learning with unla-
beled probe instances from the target domain by assigning
pseudo-labels to probes.

In face recognition literature, to the best of our knowledge,
this is the first work that leverages unlabeled probe instances to
facilitate knowledge transfer in an ensemble based algorithm.
The performance of the proposed framework is evaluated in a
cross-resolution face recognition application and the compara-
tive experiments are performed on four face databases, namely,
the CMU Multi-PIE [21], SCface [22], ChokePoint [23], and
MBGC v2 video challenge [24] databases. The results are also
presented on some real world samples (surveillance images)
and recognition is performed using the proposed co-transfer
learning algorithm against a large gallery database of 6534
subjects. Finally, the results on still-frontal matching challenge
of Point and Shoot Challenge (PaSC) database [25] are also
presented. The results show that the proposed algorithm out-
performs existing algorithms including FaceVACS which is a
commercial face recognition system.

II. LITERATURE REVIEW

The literature review is divided into three parts: (1) cross-
resolution face recognition, (2) co-training, and (3) transfer
learning.

A. Review of Cross-resolution Face Recognition Literature

In literature, several approaches have been proposed to
match cross-resolution face images. As shown in Table I,
these algorithms can be classified into two categories: super-
resolution and transformation based approaches. Fig. 3 il-
lustrates the broad categorization and the steps involved in
cross-resolution face recognition approaches. Super-resolution
based approaches for cross-resolution matching enhance the
low quality probe image before recognition. On the other
hand, transformation based approaches extract features that
are resilient to resolution changes and match cross-resolution
face images. Some of the transformation based approaches
also perform resolution invariant transformations either in the
image space or the feature space for matching.

Super-resolution based approaches: Huang and He [10]
proposed to build a coherent subspace between the PCA
features of high resolution (HR) and low resolution (LR)
images mapped using the radial basis functions for recognition.
Baker and Kanade [26] proposed an algorithm to apriori
learn the spatial distribution of image gradients to enhance
the resolution of local features before matching. Chakrabarty
et al. [27] proposed a learning based method to super-resolve
face images with kernel principal component analysis-based
prior model. Chang et al. [28], [29] formed geometrically
similar manifolds using local facial patches in the low and
high resolution images. They used training images to estimate
the high-resolution embedding and construct a smooth super-
resolved image. Yang et al. [30] proposed a super resolution
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TABLE I
EXISTING ALGORITHMS FOR CROSS-RESOLUTION FACE IMAGE MATCHING.

Approach Technique

Databases Gallery/probe resolution

Coherent features [10]

FERET, UMIST, ORL 72x72 1 12x12

Multi-modal tensor face [11]

AR, YALE, FERET 56x36 / 14x9

Super-resolution

S2R2 [12] Multi-PIE, FERET, FRGC v.2 24x24 7 6x6
Relationship learning [13] FRGC v.2 64x48 [ 28x24
LFD [14] FERET 88x 80 /33x30
Transformation Coupled locality preserving mapping (CLPM) [15] | FERET T2x72 [ 12x12
) Synthesis based LR face recognition[16] CMU-PIE, FRGC v.2 48x40 / 19x16
MDS [17] Multi-PIE 48x40 / 12x10
Super-resolution using
multiple LR images )

Construct an enhanced
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single/multiple LR
image(s) using face
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approach by representing local patches as a sparse linear com-
bination of elements from high resolution images. In addition
to these local models, Liu er al. [31] integrated a holistic
parametric and a local nonparametric model using two-step
statistical modeling for face hallucination. It was observed that
super-resolution approaches, due to environmental variations
and distortions, failed to significantly improve the recognition
performance. It is our assertion that the primary objective of
super-resolution is to obtain a good visual reconstruction from
low resolution face(s), and these algorithms are generally not
intended for recognition. However, there are some approaches
that simultaneously optimize both super resolution and face
recognition. Jia and Gong [11] combined super-resolution
and face recognition by computing a maximum likelihood
identity parameter vector in high-resolution tensor space for
recognition. Further, Hennings-Yeomans et al. [12] proposed
an approach where facial features were included in a super-
resolution method as the prior information for simultaneous
reconstruction of super-resolved images. Recently, Zou and
Yuen [13] proposed a super-resolution technique based on the
relationship between the high-resolution image space and the
very low resolution image space. Their technique improved
face recognition performance for the very low resolution
problem.

Transformation based approaches: Unlike super-resolution,
another method to match cross-resolution images is to down-
sample high resolution images to the level of low resolution
images before matching. However, information useful for face
recognition such as texture, edges, and other high frequency
information is compromised while downsampling the images.
To address this problem, Li et al. [15] proposed to project both
high resolution and low resolution images to a feature space
using coupled mappings. Biswas et al. [32] proposed a mul-
tidimensional scaling approach to simultaneously transform

Phase & magnitude,

frequency domain
information (b)

Broad view of cross-resolution face matching approaches. (a) Super resolution and (b) transformation based approaches.

the features from high resolution gallery and low resolution
probe images. The Euclidean distance between the trans-
formed feature vectors approximates the distance computed
when the probe images were captured at similar resolution
as that of the gallery images. Researchers have also studied
that the phase and magnitude in frequency domain can be
used as a resolution invariant representation for efficiently
matching cross-resolution face images. Lei et al. [14] proposed
a local frequency descriptor based on the magnitude and
phase information to match cross-resolution face images in
the frequency domain. Shekhar et al. [16] proposed a gen-
erative approach using the information from high resolution
gallery to match low resolution probe images with illumination
variations. Lei et al. [33] proposed a coupled discriminant
analysis for heterogeneous face recognition (matching high
vs. low resolution images). To maintain the discriminative
power and generalizability of their approach, they utilized
multiple samples from different resolutions along with locality
information in the kernel space.

B. Review of Co-training Literature

In co-training, as proposed by Blum and Mitchell [20], two
classifiers that are trained on separate views (features) co-train
each other based on their confidence in predicting the labels.
Nonetheless, success of a co-training framework is susceptible
to various assumptions. Blum and Mitchell [20] have shown
that two classifiers should have sufficient individual accu-
racy and should be conditionally independent of each other.
Later, Abney [46] has shown the weak dependence between
the two classifiers can also guarantee successful co-training.
Wang and Zhou [47] reported the sufficient and necessary
condition for success of a co-training framework. Co-training
has been used in several computer vision applications with
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TABLE II
SOME REPRESENTATIVE APPROACHES RELATED TO THE PROPOSED ALGORITHM.

Authors Technique

Application

Zhu et al. [34]

Heterogeneous transfer learning using matrix factorization

Classifying image and text data

Quattani et al. [35] Sparse prototype image representation

Recognizing visual categories

Ahmed et al. [36] Hierarchical feed-forward model

Recognizing visual categories

Geng et al. [37] Domain adaptation metric learning

Face recognition & web image annotation

Wang et al. [38]

Dyadic knowledge transfer using a non-negative matrix tri-factorization

Computer vision applications

Siyu et al. [39] Subspace transfer learning for kinship verification

Kinship verification using faces

Chen et al. [40]

Transferring informative knowledge for learning expression models

Learning person-specific facial expression model

Bhatt et al. [41]

Online co-training in SVMs using two independent feature representations

Face Verification

Cao et al. [42]

Transfer learning via generative Bayesian model with KL divergence

Face Verification

Ng et al. [43]
occurrence of the data

Co-Transfer Learning using a joint transition probability graph based on co-

Classifying image and text data

Zhao and Hoi [44]

Ensemble based transfer learning with incremental labeled data

Text classification

Guo and Wang [45] | Domain adaptive input-output kernel learning

Recognizing visual categories

Proposed

beled target domain data with co-training

Co-transfer learning: Ensemble based transfer leaning using incremental unla-

Face recognition

very limited exposure in biometrics. However, in biometrics
literature, unlabeled data has been used primarily for updating
the templates [48], [49], [50]. Poh et al. [51] performed a study
on the goal of semi-supervised learning where they focused on
some of the challenges and research directions for designing
adaptive biometric systems. Classifier update using co-training
is explored by Bhatt et al. [41] where the biometric classifiers
are updated using labeled as well as unlabeled instances.

C. Review of Transfer Learning Literature

Transfer learning has been explored in many computer
vision applications. Zhu et al. [34] proposed a heterogeneous
transfer learning framework that utilized annotated images
from the web as a bridge to transfer knowledge between text
and images using a matrix factorization approach. Quattoni et
al. [35] proposed a method for learning a sparse prototype
image representation for transfer across visual categories.
Their approach used a large set of unlabeled data and a kernel
function to form a representation. Ahmed et al. [36] proposed
a hierarchical feed-forward model for visual recognition using
transfer learning from pseudo tasks which include a set of
pattern matching operations constructed from the data. Geng
et al. [37] proposed a domain adaptation metric learning by
introducing a data dependent regularization to conventional
metric learning in the reproducing kernel Hilbert space. This
minimized the empirical maximum mean discrepancy between
different domains. Wang et al. [38] proposed dyadic knowl-
edge transfer which is a non-negative matrix tri-factorization
based approach to transfer cross-domain image knowledge for
the new computer vision tasks. In face recognition or related
domains, transfer learning has been applied to verify kinship
using face images through subspace transfer learning [39].
Chen et al. [40] also proposed to learn a person-specific facial
expression model by transferring the informative knowledge
from other people. Their approach allows to learn an accurate
person-specific model for a new subject with only a small
amount of person specific data. Most of the transfer learning
techniques work in offline manner and assume that the data
from the target domain is available upfront. Table II also lists
some of the closely related approaches to the proposed co-
transfer learning algorithm. Cao et al. [42] proposed a transfer
learning approach for face verification using a simple Bayesian

model. Their main idea was to minimize the KL divergence
between the source and target domain distributions to enhance
the sharing of information. Ng et al. [43] proposed a co-
transfer learning algorithm using a graph based method to
link different feature set using a joint transition probability
graph. Their approach is a supervised approach that transfers
knowledge across different domains based on the affinities
computed using co-occurrence information. Bhatt ef al. [41]
proposed a semi-supervised online co-training approach to
update the classifier’s decision boundary using labeled as well
as unlabeled information for face verification. Zhao et al. [44]
proposed an online transfer learning (OTL) framework where
knowledge is transferred from source domain to target domain
classifier within an ensemble in a supervised manner using
incremental labeled instances from the target domain. The
OTL framework forms the basis of the proposed CTL algo-
rithm. Compared to co-training and transfer learning research
directions, the proposed CTL algorithm is different in the sense
that it is an incremental semi-supervised approach that uses
few labeled and large unlabeled data to transfer knowledge
within an ensemble. Co-training is used to transform unlabeled
incremental data from the target domain into pseudo labeled
data to facilitate transfer learning. In this research, transfer
learning and co-training are jointly used to transfer the knowl-
edge learnt in the source domain (with labeled samples) to the
target domain (with unlabeled samples), as shown in Fig. 4.

III. CO-TRANSFER LEARNING FRAMEWORK

We, humans, have innate abilities of transferring knowledge
between related tasks. It is observed that if the new task is
closely related to the previous learning, humans can quickly
transfer this knowledge to perform the new task. However,
given some prior knowledge in a related task, traditional
algorithms are unable to adapt to a new task and have to
learn the new task from the beginning. Generally, they do not
consider that the two tasks may be related and the knowledge
gained in one may be used to learn the new task efficiently in
lesser time. Transfer learning attempts to mimic this human
behavior by transferring the knowledge learned in one or
more source tasks and use it for learning the related target
task. Several approaches have been proposed for transfer
learning and they can be categorized as 1) inductive, 2)
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transductive, and 3) unsupervised transfer learning. Based on
the domain representation, transfer learning approaches can
be further categorized into homogeneous and heterogeneous
transfer learning. The source and target domains share same
feature space in the former whereas feature space is different
in the later one. For a more detailed discussion on different
transfer learning approaches, readers are directed to [19].
Generally, labeled data in target domain is scarce and
obtaining labels for the target data is time consuming and
expensive in most real world scenarios; therefore, it is difficult
to learn a model for the target data. On the other hand, large
amount of unlabeled data, available in the form of probe, can
be leveraged to learn the model. There are some existing semi-
supervised approaches for face recognition [52], [53], [54],
[55] that utilize few labeled and ample amount of unlabeled
data for enhancing face recognition performance. Many of
these semi-supervised approaches are used for template update
such as semi-supervised PCA [49], [56] or LDA [57]. There
are few approaches [41], [52] that update/retrain the model
with few labeled and large unlabeled data. Mostly, existing
semi-supervised algorithms require entire unlabeled data up-
front and do not perform well for single sample per subject.
The proposed co-transfer learning algorithm builds on the
limitations of existing approaches to address the challenge of
single sample per subject and performs transfer learning in
online manner with sequential unlabeled data available from
the target domain. Transfer learning and co-training are jointly
used to transfer the knowledge learned in the source domain to
the target domain with unlabeled instances, as shown in Fig. 4.
Co-training to update the classifiers has been explored by Bhatt
et al. [41] where biometric classifiers are updated using labeled
as well as unlabeled instances. However, to the best of our
knowledge, it is the first algorithm that uses transfer learning
for face recognition as a semi-supervised approach using few
labeled and a large number of unlabeled probe instances.

Transfer learning

Source Knowledge Unlabeled Target
. probe .
Domain | —> | learnt from instances <—— | domain
(sb) SD from TD (TD)
Co-training
Fig. 4. Tllustrating the cross-pollination of transfer learning and co-training

for transferring knowledge from source domain to target domain.

The proposed framework is a generalized framework that
can be applied to any classifier which allows re-training with
incremental data. In this research, we have applied the concept
of co-transfer learning to support vector machine (SVM). Re-
training the SVM classifier in batch mode is computationally
expensive [58] and may not be feasible in real-wold appli-
cations. Some approaches have been proposed that allow re-
training the SVM classifier using only the previous support
vectors and new incremental data points. A method to add or
remove one sample at a time to update SVM is proposed in
[59] where a solution for N £ 1 samples can be obtained
using the N old samples and the sample which is to be
added or removed. In the proposed approach, SVM is first

trained using an initial training set and a decision hyperplane
is obtained. This hyperplane is then updated using the new
available instances and the previous support vectors. For more
details on updating SVM classifiers with new incremental data,
readers are directed to [41], [58], [59].

Transfer Learning: In face recognition, the classifiers such
as SVM, are learned using training data (from the source
domain) while the performance is evaluated on a separate
unseen test data (the target domain) which may have different
properties and follow a different distribution compared to
the training data. Consider a scenario where there are two
classifiers, one trained using the source and another trained
using the target domain data. During training, there is a large
labeled data in the source domain i.e., for matching HR probe
with HR gallery images (source domain) but only a few labeled
instances are available in the target domain, i.e., for matching
LR probes with HR gallery images. In such a case, the source
domain classifier alone may not efficiently classify the test
instances because of the variations in data distribution of
source and target domains. Since the classifier in target domain
is trained using only a few labeled samples, it is not able to
efficiently classify the test instances. It has to learn/update its
decision boundary with the incremental data available in the
target domain. Both the classifiers are individually insufficient
to classify the test data from the target domain. Therefore, in
the proposed algorithm, an ensemble is built as a weighted
combination of the source and target domain classifiers. It
efficiently classifies test instances and subsequently transfers
the knowledge from the source domain to the target domain as
and when the data from the target domain is available. For this,
the two classifiers trained on the source and target domains are
combined to efficiently classify the unlabeled probe instances.

View 1 View 2

| Training data in Training data in Training data in

source domain (Df)

Training data in
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Fig. 5. Block diagram illustrating the steps involved in the proposed co-

transfer learning framework.

As shown in Fig. 5, the source domain classifiers (st)
are trained using sufficient HR labeled training data de-
noted by D7 = {(uf,z1), (u3,22),..., (w;, z,)}. Every i*"
instance, u; has two views {z;1,x;2} for the training label
zi € {—1,+1}; here x; 1 and z; 2 represent the input vectors
obtained from two separate views (features). {—1} refers to
the impostor class where the query and probe images belong to
different subjects and {+1} refers to the genuine class where
the gallery and probe images belong to the same subject. The
two views are utilized for co-training (explained later). The
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target domain classifiers (C’J-T) are initially trained on a few la-
beled training instances from the target domain represented as
DT={(uT,2), (ul,22),..., (ul,, 2,,)}. Here, n and m are the
number of training instances in the source and target domains
respectively, such that n > m and 7 = 1, 2 represents the view
(feature). Let a set of r unlabeled probe instances in the target
domain be represented as Dg:{(u’lT), (u’QT), e (u’f)} An
ensemble prediction function, denoted as E;, is constructed for
each view. F; is a weighted combination of the source domain
classifier, C¥, and the target domain classifier, C;TF, with
wf ; and wlT; representing the weights of the source domain
classifier and target domain classifier for the i*" instance of
the j*" view respectively. For the i*" unlabeled probe instance
in the jth view, the ensemble function E; predicts the label,
E;(xi ;) — v ;. For the i*" instance in the target domain u’;,
class label is predicted by the ensemble as given in Eq. 1.

i = sign(wf TCS W)+l TOT W)~ ) ()
where II is a normalization function such that II(z) =
maz(0, min(1, ZEL)). Initially, both the weights are set to 0.5
so that each classifier contributes equally within an ensemble
and gradually, they are automatically adjusted to emphasize
the contribution from the updated target domain classifiers in
an ensemble. As proposed by Zhao and Hoi [44], the two
weights are updated dynamically as shown in Eqgs. 2 and 3.

s wfjhi(CS)
Wit1,j = 5 1 8 T 5 (T 2
wi,th(C )+ wi,jhl(cj )

wfjhz(CS) + ’w;Tjhl(CT)

T
Wit1,5 = (3)
where wfﬂ,j and w;ﬂrlyj are the updated weights and h; is
defined as:

hi(C) = exp{—n I(I(C;), 11(%:)) }, “)

n = 0.5, l(y,9) = (y — 9)? is the square loss function, y
is the predicted label and gy is the pseudo label provided by
co-training (explained later).

Co-training: As mentioned previously, unlabeled probe
instances are available in abundance and can be utilized to
update/learn the classifiers in the target domain. However,
it is required to obtain the labeled target data. Obtaining
labeled training instances from the target domain is difficult,
expensive, and requires human effort. In biometrics, there are
situations when only a small set of labeled data is available
for training while a huge amount of unlabeled data is read-
ily available as probe. This situation is similar to a semi-
supervised learning scenario, where co-training [20], [41] has
proven beneficial as it can be used to transform unlabeled
probe instances into pseudo-labeled training instances. In the
proposed co-training approach, a small initial labeled set is
available from the target domain for training the classifiers
and a large number of unlabeled instances are available as
probe. It assumes the availability of two ensemble functions

(classifiers), Fq and Ejs, trained on separate views (features)
where each ensemble function has sufficient (better than
random) accuracy. If the first ensemble confidently predicts
genuine label for an instance while the second ensemble pre-
dicts impostor label with low confidence, then this particular
instance (with pseudo label provided by the first ensemble) is
utilized for updating the second ensemble and vice-versa. In
this research, the confidence of prediction for an instance on
the jth view!, denoted by «;, is measured as the distance of
that instance from the decision boundary which is computed
as shown in Eq. 5.

o=, )

vl

where, R is the un-normalized output from the SVM, v is
the weight vector for the support vectors and |v| = vTv. For
confidently predicting an instance to belong to genuine class,
the distance from the decision hyperplane should be greater
than the genuine threshold (FPgc,). Similarly, an instance is
confidently predicted as impostor if the distance from the
hyperplane is greater than the impostor threshold (F;,,,;,). Here
Pyer, refers to genuine threshold when comparing for genuine
class and P, to impostor threshold when comparing for
impostor class. Since SVM is used for classification, a genuine
threshold is computed as the distance of the farthest support
vector of genuine class. Similarly, an impostor threshold
is computed as the distance of the farthest support vector
of impostor class. Varying the thresholds will change the
number of instances on which the co-training is performed.
High threshold value implies conservative co-training while
smaller value of the threshold leads to aggressive co-training.
In this manner, unlabeled probe instances are transformed
into pseudo-labeled training instances which are then used to
update the ensembles. In an ensemble, knowledge is trans-
ferred by updating the decision boundary of the target domain
classifier CjT using only the new incremental data as proposed
in [41].

Co-transfer: In the proposed framework, transfer learning
and co-training work concurrently to improve the target do-
main task with pseudo labels provided by co-training that lead
to transfer of knowledge from the source to the target domain.
Within each ensemble, the target domain classifier updates
its decision boundary [41] with every pseudo-labeled instance
obtained during testing. Moreover, the weights corresponding
to the source and target domain classifiers are also adjusted
dynamically using Eqgs. 2 and 3. This scheme avoids the
need to learn the target domain classifiers from the beginning
and hence, makes the system scalable and computationally
efficient. Note that in the co-transfer learning framework,
only target domain classifiers are updated with pseudo-labeled
instances. The source domain classifiers do not need any
update because they are well trained using large amount of
labeled data available upfront in the source domain. The
proposed co-transfer learning framework is summarized in
Algorithm 1.

'View and features are used interchangeably in the paper.
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Algorithm 1 Co-transfer learning

Input: Initial labeled training data Df in the source domain,
a few labeled instances D from the target domain. Un-
labeled probe instances Df; from target domain (available
sequentially).
Iterate: j= 1 to 2 (number of views)
Process: Train classifiers CS and CT on jt" view of DY
and Dg respectively to construct ensemble E;. Compute
confidence thresholds P; for each view.
for i =1 to r (number of probe instances) do
Predict labels: E;(z; ;) — y;, ;; calculate o;: confidence
of prediction
if a1 > P, & as < P, then
Update C7 with pseudo-labeled instance {;2,v:1)}
& recompute w5 and w3 .
end if.
if o < P, & ag > P, then
Update CT with pseudo-labeled instance {x; 1, y;2)}
& recompute wy and w7 .
end if.
end for.
end iterate.
Output: Updated classifiers O, CJ and weights wy, wf,
w5 and wi .

Generally, co-training is performed with two views to co-
train the participating classifiers by providing pseudo labeled
instances and appending the training set for classifiers trained
on each view. However, this can be generalized to multiple
views where the final pseudo label is assigned based on the
majority vote, similar to [60]. Likewise, the proposed co-
transfer learning algorithm can be generalized to accommodate
multiple views that may be extracted from other features
such as processing different channels in a color image as
separate views or adding more resolution invariant features
as separate views. However, incorporating more views may
increase computational requirements.

Error bounds: To analyze the effectiveness of the proposed
co-transfer learning algorithm, we compute the error bounds.
Using the square loss function I*(y,9) = (y — §)? and the
exponential weighting update function, bounds of an ensemble
are given as:

I
Zz* wiTI(CP) + wlTI(CT), TI(5;)) < 2In(2)  (6)

+min{Zl*((H cs

where I is the number of instances, y; is the predicted label for
the %" instance, and y; is the pseudo label for the it instance
provided by co-training. The above equation is derived by
following the proof in [44]. Using this, the error bounds of
an ensemble are derived as follows: The error at the i* step

is represented as |[wPII(CY) + w!T(CT) — ()] > 3.

I
1(g,)), Y " (I(CT), 1(G:)} - (D
i=1

Therefore, we have

I
S r@SIEy) +ul e ng) = ®
i=1
1
S @SIES) +wl MEH MG > 1M ©)
i=1

Combining Eqgs. 6 and 8, we have

iM < min {Z cs, ZC’T} +2In(2)

where SC5 = SOL1*(I(CF),M(5:)) and SCT =
21.121 I*(I(CF), T1(5;)). For two ensembles, when the final
decision classification decision is based on their combination,
the error bounds M for the co-transfer learning algorithm are
given as:

(10)

Y

The primary objective of selecting two ensembles is to fa-
cilitate co-transfer learning as one ensemble provides pseudo
labeled training instances to the other. Therefore, the error
bounds of the proposed algorithm will lie between the error
bounds of the two participating ensembles as shown in Eq. 11.
Note that these error bounds are derived under the assumption
that the pseudo labels provided by co-training are correct.

min(Mg1, Mp2) < M < maz(Mg1, Mg2)

IV. CO-TRANSFER LEARNING FOR CROSS-RESOLUTION
FACE RECOGNITION

In an operational scenario, training is performed in a
controlled environment; whereas during testing, a biometric
system encounters data from uncontrolled environment. Co-
training is particularly useful for recognizing cross-resolution
face images. Fig. 6 shows the block diagram of the proposed
co-transfer learning framework for matching cross-resolution
face images. First, the source and target domain classifiers
are trained on two views (features) and two ensemble func-
tions (E; and E;) are built. One view is the local phase
quantization (LPQ)? [61] and the second view is the scale
invariant feature transform (SIFT)? [62]. LPQ operates on
the Fourier phase computed locally for a window in every
image position and utilizes local phase information extracted
using a short-term Fourier transform. In our experiments, same
parameters as proposed by Ahonen et al. [61] are used. SIFT
[62] is a scale and rotation invariant descriptor that generates
a compact representation of an image based on the magnitude,
orientation, and spatial vicinity of image gradients. In this
research, SIFT descriptor is computed in a dense manner on
pre-defined interest points. Both these views are resilient to
scale changes and can be effectively used for matching face
images with different resolutions. The two features provide
diverse information, one encodes the discriminative phase
information whereas the other encodes information from the

2Source code available at
/LPQMatlab
3Source code available at hittp //labelme.csail.mit.edu —

/Release3.0/browserTools/php/matlabioolbox.php

http://www.cse.oulu.fi/lCMV/Downloads-
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image gradients. LPQ and SIFT descriptors are normalized
to unit length. A second normalization step is performed by
suppressing any component larger than 0.2 down to 0.2 and
re-normalizing the vector to unit length. Finally, x? distance is
used to compare two corresponding LPQ and SIFT descriptors.
For normalizing face images, eye-coordinates are detected
using OpenCV’s boosted cascade of Haar-like features. Face
image is normalized with respect to the horizontal axis and the
inter-eye distance is fixed to 100 pixels for a 216 x 216 image.
Low resolution images are also normalized in a similar manner
where the inter-eye distance is normalized in proportion to the
image resolution®.

Initial training on labeled data from the source and target
domains: The co-transfer learning framework assumes that
during training, each subject has high resolution gallery-probe
pairs and a few subjects have corresponding low resolution
images from the target domain. For a given gallery-probe pair,
face images are tessellated into 3 x 3 patches. LPQ and SIFT
descriptors are computed for each local patch and matched
using the x? distance measure. Distance scores corresponding
to local patches are vectorized to an input vector {u;,z;},
where z; € {—1,+1} is the associated label. {+1} signifies
that the gallery-probe pair belongs to the same individual (i.e.
genuine pair) whereas {—1} signifies that the gallery-probe
pair belongs to images corresponding to different individuals
(i.e. impostor pair). Input vectors obtained by matching LPQ
descriptors of two high resolution images are utilized for
training the source domain SVM classifier (C’ls ) on view 1.
On the contrary, the target domain SVM classifiers for view 1
are trained using one high resolution and one low resolution
images. The source domain and target domain SVM classifiers
are then combined to form an ensemble, E;. Similarly, the
SVM classifiers for view 2 (SIFT) are trained and the ensemble
function FE5 is learned.

Co-transfer learning with unlabeled probes from the target
domain: Similar to the training phase, for matching a LR
probe with a HR gallery image, the images are tessellated into
non-overlapping local patches and LPQ and SIFT descriptors
are computed for each local patch. LPQ descriptors from the
corresponding local patches on the gallery and probe images
are matched using x? distance and the distance scores from
these local patches are vectorized to form an input vector u’ for
view 1. Similarly, an input vector corresponding to SIFT (view
2) is computed using the x? distance measure. Unlike training,
the instances obtained during testing are unlabeled. For every
query given to the biometric system, both the ensembles, F
and FE,, are used to classify the instance. If one ensemble
confidently predicts genuine label for an instance while the
other ensemble predicts impostor label with low confidence,
then this instance is added as a labeled re-training sample for
the second ensemble and vice-versa. The target domain SVM
classifiers (CT) in the ensembles are updated with pseudo-
labeled probe instances obtained during testing. Further, the
weights for both source domain and target domain SVM

4For images on which the eye-detection failed because of low resolution,
normalization was performed manually.

classifiers are also updated with each pseudo-labeled probe
instance, as shown in Eqgs. 2 and 3. Thus each ensemble
updates the target domain classifier of the other ensemble.
The final decision is computed by combining responses from
both the ensembles.

V. DATABASE AND EXPERIMENTAL PROTOCOL

The performance of the proposed co-transfer learning
framework is evaluated on four different databases, (1) CMU
Multi-PIE [21], (2) SCface [22], (3) ChokePoint [23], and
(4) Multiple Biometric Grand Challenge (MBGC) v.2 video
challenge database [24]. Fig. 7 show sample images from
all four databases used in this research are shown in Fig. 7.
The experiments are designed to resemble real world scenario
where ample training data is available in source domain to
train the classifiers for classifying the high resolution gallery-
probe pairs as genuine or impostor. However, only a few low
resolution probe and corresponding high resolution gallery
images are available for training the classifiers in the target
domain. To emulate such conditions, Table III lists the number
of high resolution gallery-probe pairs that are used for training
the classifiers in source domain and the number of low reso-
lution probe and corresponding high resolution gallery images
used for training classifiers in the target domain. The training
subjects in target domain are a subset of the training subjects
in source domain. Further, co-transfer learning and initial
training of source and target domain classifiers are performed
on non-overlapping subjects. To evaluate the efficacy of the
proposed framework, a joint adapt-and-test [44] strategy is
used which allows the data used for performance evaluation to
be concurrently used for model adaptation. It is to be noted that
the proposed framework is first used to classify an unlabeled
probe instance and based on the confidence of prediction, this
instance may be used as a pseudo-labeled training instance for
updating/re-training the ensemble. Therefore, the classification
is always performed on unseen instances which is the case with
most of the real world applications.

EEIE
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A Al A

(d)

Fig. 7.  Sample images from the (a) CMU Multi-PIE, (b) SCface, (c)
ChokePoint, and (d) MBGC v.2 video challenge databases.

CMU Multi-PIE [21] database comprises images from 337
individuals captured in four different sessions with varying
pose, expression, and illumination. For experiments, a subset
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Fig. 6. Block diagram for the co-transfer learning framework for cross-resolution face matching. (a) Illustrates the training process of the source and target
domain classifiers to build the ensembles and (b) co-transfer in the target domain with unlabeled probe instances.

TABLE III
EXPERIMENTAL PROTOCOL ON DIFFERENT DATABASES FOR CROSS-RESOLUTION FACE MATCHING. TRAINING SUBJECTS IN THE SOURCE DOMAIN
SPECIFIES THE TOTAL NUMBER OF SUBJECTS USED FOR TRAINING DIFFERENT ALGORITHMS. * FOR CHOKEPOINT DATABASE, TRAINING OF SOURCE
AND TARGET DOMAIN CLASSIFIERS IS PERFORMED USING THE CMU MULTI-PIE [21] DATABASE. FOR EXPERIMENTS WITH CMU MULTI-PIE, IMAGES
ARE SYNTHETICALLY DOWN-SAMPLED TO THE DESIRED RESOLUTION USING LINEAR INTERPOLATION.

Database No. of subjects in Training No. of subjects in Resolution range Covariates

Source domain | Target domain | Testing/Co-transfer learning (pixels) (apart from low resolution)
Multi-PIE [21] 100 40 237 216x216 - 16x 16 | Illumination
SCface [22] 50 20 80 T2x72 - 24x24 Camera distance, pose, & illumination
ChokePoint* [23] 50 20 29 216x216 - 16x 16 | Pose, illumination & expression
MBGC v.2 [24] 60 30 87 216x216 - 16x 16 | Pose, illumination, walking & talking

pertaining to 337 individuals with frontal pose and neutral
expression are selected; however, the gallery and probe images
vary in illumination conditions. For each subject, one high
resolution image is kept in the gallery and one low resolution
image is used as probe.

SCface database is a real-world surveillance database com-
prising images of 130 individuals captured in uncontrolled in-
door environment using multiple surveillance cameras placed
at different distances. For each subject, one high resolution
image is kept in gallery and five images captured from
different cameras are used as probe. SCface database contains
low resolution images ranging from 48 x 48 to 24 x 24 pixels
and experiments are performed without interpolating these
images. Therefore in the experimental protocol of the SCface
database, gallery and probe images vary from 72 x 72 to 24 x 24
pixels.

ChokePoint database is a video database captured un-
der real-world surveillance conditions. Three cameras placed
above the portals are used to capture individuals walking
through the portal. Images are captured with surveillance cam-
eras in unconstrained environment and include illumination,
expression, and pose variations. The database consists of 29
unique subjects and the videos are captured in two portals
with a time gap of about one month. Since there are only 29
subjects in the database, training of both source and target
domain classifiers is performed using the CMU Multi-PIE
database. For each subject in the ChokePoint database, one
high resolution image is used as gallery and five images are
used as probe.

MBGC v.2 video challenge database used in the experiments
contains multiple videos in standard definition (720 x 480
pixels) and high definition (1440 x 1080 pixels) format cor-
responding to 147 subjects are used. The database includes

videos where the user is walking or performing some activity.
Faces present in these videos have variations due to pose,
illumination, and expression. The faces extracted from video
frames are partitioned into the gallery and probe data sets (here
we ensure that gallery and probe images are from different
sessions i.e. from different videos of the person). Gallery
consists of single image per user and probe set comprises five
images from different sessions.

The application of matching cross-resolution face images
is more applicable in an identification (1: N matching) sce-
nario. Following the common protocol in literature [14], [16],
[17] the performance of the proposed framework is reported
on a closed set identification scenario. Further, to emulate
the conditions that the gallery is generally captured under
controlled conditions, the experiments are performed with
settings such that the resolution of gallery images is always
higher than the probe images. Experiments are performed with
single image per subject in the gallery. The performance is
reported in identification mode with 10 times repeated random
sub-sampling (cross-validations) for non-overlapping training-
testing partitions. Experiments are performed at different res-
olutions of gallery and probe images ranging from 216x216
pixels to 16x16 pixels. Face images in the databases are
available at different resolutions and are interpolated to the
nearest resolution in the experimental protocol using bi-cubic
interpolation.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

For cross resolution face matching, the performance of algo-
rithms degrade mainly due to the 1) difference in information
content between the high resolution gallery and low resolution
probes and 2) limited biometric information in face images
at low resolution. The proposed algorithm attempts to address
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these issues by using the knowledge learned for matching high
resolution images from the source domain to efficiently match
low resolution images from the target domain. The objective
of these experiments is to determine the effectiveness of the
proposed algorithm in transferring knowledge from the source
domain to target domain for cross resolution face matching.
For this, we compare the performance of the proposed algo-
rithm with different algorithms: (1) SIFT with SVM classifier
and LPQ with SVM classifier, referred to as SIFT and LPQ
in the results, (2) sum-rule score level fusion [63] of two
ensembles trained on the initial labeled data from the source
and target domains (referred to as ‘fusion’), (3) Multidimen-
sional Scaling algorithm (MDS) proposed by Biswas et al. [17]
for matching low resolution face images, (4) a widely used
commercial-off-the-shelf (COTS) face recognition algorithm,
FaceVACS, referred to as COTS, (5) three super-resolution
techniques, namely super-resolution-1 (SR-1, a standard bi-
cubic interpolation), super-resolution-2 (SR-2°, a regression
based technique proposed by Kim and Kwon [64]), and super-
resolution-3 (SR-3°, a sparse representation based approach
proposed by Yang et al. [30]), and (6) match score fusion
of the proposed algorithm with MDS [17] and COTS using
sum-rule [63].

A. Analysis

The results suggest that the proposed approach efficiently
matches cross-resolution face images by leveraging knowledge
learned in the source domain. It also validates our assertion
that co-training enables updating the decision boundary of
target domain classifiers with unlabeled probe instances as and
when they arrive.

e Cross-pollination of transfer learning and co-training
seamlessly transfers the knowledge learned in the source
domain for matching cross-resolution face images. Co-
training and transfer learning go hand-in-hand as co-
training provides pseudo labels for unlabeled test in-
stances which in-turn are used to update the target domain
classifiers within each ensemble.

o Updating the weights of the source and target domain
classifiers allows to dynamically adjust the contribution
from the constituent source and target domain classifiers
in an ensemble. Initially, equal weights are assigned to
both the classifiers; however with knowledge transfer,
weights of classifiers in the target domain become more
prominent. Table IV shows the number of instances
on which co-transfer learning is performed for different
databases. It also shows how the co-transfer learning on
unlabeled instances changes the weights of an ensemble
so as to better classify the target domain samples. The
experiments show that on all four databases combined,
co-training provides correct pseudo labels for about 98%
of the total instances.

« As more and more pseudo labeled instances are available,
the weights for the source and target domain classifiers

SSource code is available at authors http://www.mpi-

inf.mpg.de/kkim/.
6Source code is obtained from http://www.ifp.illinois.edu/jyang29/.
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TABLE IV
NUMBER OF INSTANCES ON WHICH CO-TRANSFER LEARNING IS
PERFORMED AND HOW THE WEIGHTS WITHIN AN ENSEMBLE SHIFT TO
EMPHASIZE THE CONTRIBUTION OF THE TARGET DOMAIN CLASSIFIER.

# pseudo labels Weights after co-transfer

Database

] C3 w] | wi wy w3
CMU Multi-PIE [21] | 5184 4210 0.18 | 0.82 | 0.23 | 0.77
SCface [22] 7346 5268 0.21 | 0.79 | 0.27 | 0.73

ChokePoint [23] 456 540
MBGC v2 [24] 8136 6874

0.33
0.22

0.67
0.78

0.36
0.24

0.64
0.76

saturate. Co-transfer learning can converge when the
weight saturation occurs i.e., the weights of source do-
main classifiers become zero, and the emphasis is shifted
towards the target domain classifiers. Weight transfer can
saturate if and only if (i) the two views are independent
(property of co-training); (ii) co-training algorithm yields
correct pseudo labels (property of transfer learning); and
(iii) large number of samples are available for training.
Since, it is challenging to fulfill all three conditions in
a real world face recognition scenario, the proposed co-
transfer learning algorithm follows the concept of lifelong
learning [65] where the classifiers continue to learn and
adapt.

o The behavior of the proposed algorithm is further an-
alyzed and Fig. 8(a) illustrates sample cases where the
proposed co-transfer learning algorithm correctly rec-
ognizes the low resolution probe images. Examples in
Fig. 8(b) illustrate cases where the proposed algorithm
performs poorly. The poor performance can be attributed
to the fact that some of the pseudo labels assigned to
unlabeled probe instances may be incorrect leading to
negative transfer. However, the effect of negative-transfer
can be minimized by optimally selecting the confidence
threshold for co-training. High threshold value implies
conservative transfer while smaller value of the threshold
leads to aggressive transfer.

4&:%:4

2P L e
] sl el ety

(b)
Fig. 8. [Illustrating sample cases when the proposed approach (a) correctly
recognizes and (b) fails to recognize. All the examples are with probe (left

image) size 24x24 and gallery (right image) size 72x72.

1).‘4

The subsections below list the performance of individual
components of the co-transfer learning algorithm, compare the
performance of the proposed algorithm with transformation
and super-resolution based approaches, and finally reports the
performance on real word surveillance images and Point and
Shoot face database [25].

1) Performance of Individual Components: The proposed
co-transfer learning algorithm gains from individual compo-
nents such as co-training, transfer learning and ensembles.
To analyze the effect of transfer learning, additional experi-
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ments are performed, referred as “HR/LR matching + transfer
learning”. In this experiment, the source domain comprises
HR probe and gallery images. The target domain comprises
HR gallery, downsampled HR images as LR probes, and the
few labeled examples are available from the target domain. In
Tables V-VIII, “HR/LR TL (LPQ)” and “HR/LR TL (SIFT)”
refers to experiments on LPQ and SIFT features respectively.
“HR/LR TL LPQ + SIFT” refers to match score level fusion.
These experiments are trained in a supervised manner unlike
the proposed co-transfer learning algorithm which uses semi-
supervised learning. In this case, the ensembles on the two
views work independent of each other. The target domain
classifier and weights for the two components in an ensemble
are updated with labeled instances in the target domain and the
synthetic data obtained by downsampling the source domain
data. Similarly, to analyze the effect of co-training, “HR/LR
matching + co-training” experiments are performed, referred
to as “HR/LR CT” in Tables V-VIIL. In this experiment, large
number of instances from the source domain are combined
with few labeled instances from the target domain for training
the classifier. Here, one classifier is trained on all the data
available for initial training. We use two classifiers trained
on two separate views of the training data which then co-
train each other with the additional unlabeled instances from
the target domain. The results in Tables V-VIII report the
performance of different components.

e« HR/LR + transfer learning on the two views (i.e. SIFT
and LPQ) yields better or comparable results compared to
the individual ensembles and their fusion. It is observed
that HR/LR + transfer learning on LPQ gives better
performance as compared to HR/LR + transfer learning
on SIFT. However, the proposed CTL algorithm still
outperforms HR/LR + transfer learning on individual
views as it combines the complimentary information
from both the ensembles. HR/LR + transfer learning also
outperforms the MDS algorithm.

o The performance of the proposed CTL algorithm is better
than the performance of match score level sum rule fusion
of HR/LR + transfer learning on SIFT and LPQ. The
gain in performance is attributed to the fact that in the
proposed co-transfer learning, the two ensembles co-train
each other on the target domain instances. In HR/LR +
transfer learning on LPQ and SIFT, the two classifiers are
trained independent of each other. Moreover, the down-
sampled instances from the source domain do not greatly
facilitate the classifiers to improve the performance on
the target domain instances. This validates our assertion
that downsampling source domain instances may lead to
loss of information which is useful for face recognition.

e The performance of HR/LR + co-training is lower as
compared to HR/LR + transfer learning as the few labeled
target domain data is over shadowed by large number
of labeled source domain data during training. It is a
semi-supervised approach where unlabeled data from the
target domain has to be transformed into pseudo labeled
instances to co-train the classifiers on separate views.
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2) Comparison with COTS and Transformation based Ap-
proaches: The performance of the proposed co-transfer learn-
ing (CTL) algorithm is compared with MDS [17], COTS,
individual ensembles of SIFT [62], and LPQ [61], and their
fusion. The results are also evaluated by fusing the proposed
CTL algorithm with other techniques such as MDS [17] and
COTS. Tables V-VIII show the results of the proposed and
existing algorithms with different combinations of gallery-
probe resolution on the four databases.

The Cumulative Match Characteristics (CMC) curves in Fig.
9 show the performance of different algorithms for matching
probe images of resolution 24 x 24 with gallery images of res-
olution 72x72. As compared to fusion of two ensembles, the
knowledge transfer from the source to target domain improves
the accuracy by at least 4-5%. During initial training, since the
source and target domain classifiers are trained independently,
the knowledge transfer is not available in an ensemble. It is
feasible only with pseudo labeled probe instances available in
the target domain during testing. Table V shows the results on
the CMU Multi-PIE database. The images in the CMU Multi-
PIE database are of very high quality and therefore the results
on this database may not be representative of cross resolution
face matching with surveillance quality databases. However,
since the previous research on low resolution face recognition
has shown the results on the CMU Multi-PIE database, we are
using this database (along with three surveillance databases) to
establish the baseline comparison with MDS. The results show
that for high resolutions, COTS performs better than the pro-
posed CTL and MDS algorithms. However, the performance
of the commercial system reduces significantly on reducing the
resolution of probe images. On the contrary, the performance
of CTL reduces at a lower rate and it yields better results than
COTS when the probe image is of resolution 16 x 16.

Table VI shows the results on the SCface database [22].
The proposed algorithm yields promising results on the real-
world surveillance database and even outperforms COTS by at
least 24% on all combinations of gallery and probe resolutions.
Since the proposed algorithm uses SIFT and LPQ features
that are resilient to pose variations and changes in gray-
level intensities due to illumination variations, it inherently
addresses the problem of head-pose and illumination variations
in the SCface database. Moreover, the knowledge transfer with
unlabeled probe instances in the target domain facilitates to
efficiently classify the low resolution probes. Tables VII and
VIII illustrate the performance on the ChokePoint [23] and
MBGC v.2 video challenge [24] databases respectively. On
both the databases, the proposed algorithm performs better
than the existing algorithms and COTS for all combinations
of gallery-probe resolutions (except for gallery 216x216 and
probe 72x72, where COTS gives better performance).

From the results shown on the three surveillance databases,
it can be inferred that for high resolution gallery-probe pairs,
COTS performs better than the proposed algorithm. However,
for lower resolutions, the proposed algorithm yields better
results. The performance of transformation based approaches
such as MDS [17] degrades when the difference in resolution
of gallery and probe images increases (i.e. matching gallery
images of 216x216 with probe image of resolution 32x32 or
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TABLE V
RANK-1 IDENTIFICATION ACCURACY OF THE PROPOSED CTL ALGORITHM AND COMPARISON WITH EXISTING ALGORITHMS AND COMMERCIAL SYSTEM
ON THE CMU MULTI-PIE DATABASE [21]. SIFT WITH SVM CLASSIFIER AND LPQ WITH SVM CLASSIFIER ARE REFERRED TO AS SIFT AND LPQ
RESPECTIVELY, E1 REFERS TO ENSEMBLE 1, E2 REFERS TO ENSEMBLE 2, FUSION REFERS TO SUM RULE FUSION OF TWO ENSEMBLES, MDS REFERS TO
MULTIDIMENSIONAL SCALING ALGORITHM PROPOSED BY BISWAS et al. [17], COTS (COMMERCIAL-OFF-THE-SHELF) REFER TO FACEVACS, AND CTL
IS USED FOR THE PROPOSED CO-TRANSFER LEARNING ALGORITHM. HR/LR TL (LPQ) REFERS TO HR/LR MATCHING + TRANSFER LEARNING VIA
LPQ FEATURES AND HR/LR TL (SIFT) REFERS TO HR/LR MATCHING + TRANSFER LEARNING VIA SIFT FEATURES, HR/LR TL LPQ + SIFT
REFERS TO MATCH SCORE LEVEL FUSION OF THE TWO APPROACHES, AND HR/LR MATCHING + CO-TRAINING EXPERIMENTS ARE REFERRED TO AS

HR/LR CT.
Resolution Algorithm

Lk | LR | T | LR | cors | CTL+ | CILt

Gallery Probe LPQ | SIFT El E2 Fusion | MDS | CTL TL TL LPQ+ CT MDS COTS

(LPQ) | (SIFT) SIFT

72x72 66.3 61.7 | 724 | 68.1 76.2 77.8 81.0 72.5 76.6 79.2 69.6 99.5 80.2 99.8

48x 48 63.6 582 [ 70.6 | 67.3 74.5 752 79.7 71.2 744 774 68.4 98.1 79.4 99.3

216x216 | 32x32 454 418 | 532 | 474 58.7 61.3 65.3 534 56.3 61.8 49.2 97.4 63.7 98.5
24x24 222 214 | 295 | 26.8 329 334 37.7 27.8 30.4 34.4 28.5 54.5 35.6 58.2

16x16 10.8 9.6 16.7 | 13.3 18.1 20.2 23.6 13.6 17.5 20.5 15.8 10.9 22.1 24.8

48x48 73.8 714 | 794 | 76.3 86.1 89.2 92.3 78.2 85.4 89.6 79.2 98.2 92.7 99.1

79572 32x32 62.8 49.8 | 69.1 | 552 79.4 81.5 84.1 73.4 78.3 81.7 58.5 96.3 84.3 97.4
24 %24 56.8 526 | 61.8 | 594 70.3 75.7 77.4 64.3 69.2 73.3 62.4 64.5 78.5 80.1

16x16 50.2 474 | 56.7 | 52.1 66.2 68.9 72.4 60.8 66.5 69.6 55.6 11.5 72.8 76.1

32x32 442 425 | 503 | 47.8 55.2 58.7 61.8 51.6 55.2 58.2 49.8 96.8 60.5 97.1

48x48 24 %24 42.6 39.8 | 48.6 | 445 51.7 54.9 57.1 46.4 50.6 54.4 48.5 75.9 55.8 78.5
16x16 20.6 182 | 262 [ 223 29.9 31.3 32.9 23.8 28.6 30.5 25.2 6.4 39.4 43.2

39532 24x24 37.6 30.1 | 41.2 | 304 44.8 40.9 45.7 38.6 44.4 453 334 78.4 454 80.6
16x16 22.1 168 | 243 | 172 27.0 25.1 28.1 22.8 26.6 27.4 19.6 54 29.8 30.0

[ 24x24 J16x16 [ 30.8 [ 264 [ 356 [ 302 ] 421 [ 381 [ 432 ] 365 [ 418 | 425 [335] 163 [ 446 | 418 |
TABLE VI

RANK-1 IDENTIFICATION ACCURACY OF THE PROPOSED CTL ALGORITHM AND COMPARISON WITH EXISTING ALGORITHMS AND COMMERCIAL SYSTEM
ON THE SCFACE DATABASE [22].

Resolution Algorithm
}I{lli/ }I{lli/ H%R Iil,%/ cors | CTL+ | CTL+
Gallery | Probe LPQ | SIFT El E2 Fusion | MDS | CTL TL TL LPQ+ CT MDS COTS
(LPQ) | (SIFT) SIFT
48x48 58.4 558 | 63.2 | 60.4 74.4 76.1 79.4 75.8 65.6 77.2 62.8 357 80.4 834
72x72 | 32x32 5334 523 | 5381 | 537.8 67.4 70.4 72.8 69.1 61.3 71.6 60.2 18.3 73.7 76.2
24x24 48.1 435 | 5326 | 49.1 60.2 64.8 66.4 61.6 5438 64.5 523 10.3 67.6 70.1
4848 32x32 36.2 32.6 | 40.2 | 36.5 45.8 47.9 50.0 46.8 42.7 48.8 38.6 23.8 50.6 54.3
24x24 25.6 242 | 302 | 283 35.6 38.1 40.3 36.8 33.6 383 30.8 1435 39.5 45.1
[ 32x32 [ 24x24 [ 225 [ 173 [ 264 [ 213 ] 297 [ 312 [ 331 ] 316 | 294 [ 320 [244] 84 ] 339 [ 362 |

TABLE VII
RANK-1 IDENTIFICATION ACCURACY OF THE PROPOSED CTL ALGORITHM AND COMPARISON WITH EXISTING ALGORITHMS AND COMMERCIAL SYSTEM
ON THE CHOKEPOINT DATABASE [23].

Resolution Algorithm
IR | LR | U | LR | cors | STk | CILs
Gallery Probe LPQ | SIFT | El1 E2 | Fusion | MDS | CTL TL TL LPQ+ CT MDS | COTS
(LPQ) | (SIFT) SIFT
72x72 322 28.6 | 36.3 | 325 39.8 41.6 44.6 41.2 38.2 42.7 34.6 46.2 43.2 50.9
48x48 23.1 22.1 ] 29.6 | 28.1 31.5 33.8 38.4 33.0 31.5 35.6 30.4 33.7 36.8 2.3
216x216 | 32x32 21.8 21.8 | 273 | 25.7 30.6 32.5 355 322 29.4 334 28.1 204 34.1 39.5
24x24 18.4 162 | 232 | 207 28.4 29.1 324 29.8 26.8 30.8 23.0 10.3 31.7 35.1
16x16 9.6 8.2 147 1 112 15.6 17.8 20.2 17.1 16.6 18.3 12.8 6.04 19.3 234
48x48 424 36.1 | 484 | 426 50.5 50.9 53.7 522 50.4 534 453 22.7 53.1 56.4
79572 32x32 32.6 31.8 | 37.6 | 35.7 39.5 41.6 438 41.2 39.2 42.0 38.1 12.7 42.6 47.2
24x24 254 236 | 30.5 | 289 31.6 324 36.1 33.0 32.6 342 30.8 9.5 34.8 39.5
16x16 21.4 19.6 | 262 | 238 28.1 28.7 31.6 29.8 28.4 30.3 25.6 7.6 304 35.2
32x32 354 326 | 412 | 37.6 44.7 454 48.2 46.6 434 47.1 404 18.5 47.8 50.9
48x48 24x24 232 204 | 274 ] 248 29.5 30.2 33.1 31.6 29.1 32.8 27.1 11.8 32.6 37.2
16x16 17.6 145 | 21.8 | 19.6 24.1 26.3 28.3 258 23.6 26.5 22.7 4.7 275 31.6
39532 24 %24 20.4 148 | 234 | 187 24.3 28.6 31.6 26.2 25.6 29.4 21.3 16.4 30.8 354
16x16 14.6 9.6 173 | 134 19.6 21.9 23.1 21.1 19.2 21.8 15.6 35 22.5 26.0

[ 24x24 | 16x16 || 194 | 156 | 227 [ 186 | 258 | 287

305 | 274 | 242 | 291 [ 208 ] 135 | 314 | 358 |
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RANK-1 IDENTIFICATION ACCURACY OF THE PROPOSED CTL ALGORITHM AND COMPARISON WITH EXISTING ALGORITHMS AND COMMERCIAL SYSTEM

ON THE MBGC V.2 VIDEO CHALLENGE DATABASE [24].

Resolution Algorithm
IR | LR | U | LR | cors | STk | CILs
Gallery Probe LPQ | SIFT | El1 E2 | Fusion | MDS | CTL TL TL LPQ+ CT MDS | COTS
(LPQ) | (SIFT) | SIFT
72x72 27.2 254 | 30.8 | 282 334 36.5 40.7 32.6 353 37.0 304 443 39.2 47.3
48x48 22.6 248 ] 262 | 237 29.3 30.8 335 28.4 31.8 325 25.5 31.4 32.7 36.8
216x216 | 32x32 20.8 172 | 23.6 | 209 26.1 28.4 32.6 25.7 28.4 30.1 22.7 18.5 314 35.2
24 %24 17.6 154 ] 21.5 | 18.6 2377 25.3 28.1 23.5 25.2 26.8 20.8 9.8 26.9 29.5
16x16 9.6 8.8 12.5 | 10.1 14.8 16.8 19.5 14.2 16.5 18.2 12.4 5.7 18.7 20.8
48x48 38.2 33.6 | 43.1 | 39.7 453 46.8 49.3 45.8 47.8 48.1 42.1 21.2 48.6 50.7
79572 32x32 29.2 264 | 334 | 29.1 35.9 38.3 41.9 35.1 38.1 40.8 31.5 11.4 40.5 45.2
24x24 23.6 204 ] 263 | 225 28.7 29.8 332 28.2 31.2 32.0 24.4 8.7 31.5 36.9
16x16 19.6 16.8 | 22.7 ] 194 24.8 26.5 29.5 24.8 26.6 275 21.3 6.2 28.1 33.5
32x32 33.6 312 | 384 | 33.1 40.5 443 474 40.7 42.7 45.6 35.8 17.2 46.8 48.7
48x48 24x24 21.4 202 | 24.6 | 21.3 25.8 27.6 30.3 26.6 27.6 28.4 235 10.2 294 33.5
16x16 16.5 148 | 182 | 157 20.3 24.1 26.5 20.4 22.5 24.1 174 4.2 26.1 279
32%32 24 %24 17.8 126 | 20.7 | 15.6 22.3 27.1 28.6 22.6 242 26.2 17.7 14.8 29.2 33.2
16x16 12.6 8.6 14.6 | 10.9 16.3 19.8 21.3 16.2 18.4 19.8 12.3 3.1 20.6 23.9
[ 24x24 J16x16 [ 184 [ 148 [ 204 [ 161 [ 235 [ 273 [ 282 | 225 25.6 279 [ 180 ] 119 [ 294 318 |
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Fig. 10. CMC curves comparing the performance of the proposed algorithm with three super resolution techniques on the (a) CMU Multi-PIE, (b) SCface,
(c) ChokePoint, and (d) MBGC v.2 video challenge databases. Probe images of 24 x24 pixels are super-resolved by a magnification factor of three to match
the gallery resolution of 72x72 pixels.

lower). The transformations learned for such wide variations in
gallery-probe resolution may not be precise and thus degrade
the performance. Experimental results in Tables V-VIII also
show that sum-rule fusion [63] of the proposed algorithm with
COTS further enhances the performance of cross-resolution
face matching. This improvement in performance may be

attributed to the combined effect of COTS and CTL. COTS
efficiently addresses the difference in the information content
at higher resolutions, while CTL addresses the problem of
limited biometric information at low resolution images. On
the contrary, sum-rule fusion of the proposed CTL with
MDS [17] slightly degrades the performance as it may not
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efficiently accommodate for large difference in information
content between the gallery-probe pairs.

For experiments on the CMU Multi-PIE database, there
is only a single gallery and a single probe image from
the target domain. The proposed co-transfer learning can
efficiently transfer the knowledge to better learn the target
domain decision boundary using only a single gallery and
single probe image (completely unseen training and testing).
However, this condition is slightly relaxed for experiments
with other three databases which contain multiple probes per
subject in the target domain and the classifiers may be trained
on subjects with these multiple probes in an incremental
manner. It is to be noted that the probe images are first
used for recognition (testing) and then used to update the
weights in an incremental semi-supervised manner. Therefore,
the probe images are incorporated in training only after they
have classified - thereby maintaining the unseen nature of
training and testing databases.

- & Rha = | &
(a) ‘] 3 3 : 3
’ e e ¥ - d
- G O o
P Fes P 7N
(c) raE e e L
1 | N |
F r F F 3
(d)P ’ ' ’ : -’? '~ X
SR-2 SR-3

24x24 SR-1 72x72
Fig. 11. Enhanced images obtained using three super-resolution techniques
(SR-1,SR-2, and SR-3). The leftmost column represents low resolution
(24x24) images and the rightmost column represents the original high
resolution images (72x72) from the (a) CMU Multi-PIE, (b) SCface, (c)
ChokePoint, and (d) MBGC v.2 video challenge databases.

3) Comparison with Super-resolution Approaches: In this
section, the performance of the proposed co-transfer learning
algorithm is compared with three super-resolution techniques
proposed in literature. For evaluating the effectiveness of
super-resolution techniques for matching low and high resolu-
tion face images, it is used as a pre-processing step to enhance
the quality of low resolution face images before matching.
Some examples of enhanced images are shown in Fig. 11. The
enhanced image is matched with high resolution gallery image
using different algorithms. The LPQ and SIFT features are
extracted from the super-resolved images and the performance
is computed after sum-rule fusion [63] of LPQ and SIFT
match scores computed using the x? distance metric. For
evaluating the performance with the proposed technique and
COTS, super-resolution based on sparse representation (SR-
3) is applied on the probe images and then feature extracting
and matching are performed using the CTL algorithm (referred
to as “CTL+SR”) and COTS (referred to as “COTS+SR”).
The target domain thus includes enhanced images obtained
using super-resolution. It is to be noted that transfer learning is
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still applicable as super-resolution introduces several artifacts
that may affect the biometric information in a face image
and leads to variations in data distribution (of features or
match scores) between the source and target domains. The
classifiers in target domain are now trained to match the
enhanced probe images with HR gallery. For the experiments,
super-resolution is performed with a magnification factor of
three to match probe images of size 24 x 24 with 72 x 72
gallery images. CMC curves in Fig. 10 show that the proposed
co-transfer learning algorithm outperforms all three super-
resolution techniques by at least 11% on the CMU Multi-
PIE database, 10% on the SCface database, and 4% on the
ChokePoint and MBGC v.2 video challenge databases. Further,
as shown in Fig. 10, enhancing probe images using super-
resolution boosts the performance of both CTL and COTS.
It is observed that super-resolution minimizes the difference
in the resolutions of gallery and probe images. However, it
does not enhances the biometric information in face images.
Therefore, the performance gain is constrained by limited
biometric information in low resolution face images.

B. Performance on Real World Cases

Recently, Klontz and Jain [66] have investigated the op-
portunity for face recognition algorithms to facilitate law
enforcement agencies in identifying individuals from the crime
scene CCTV footage during the Boston bombings incident.
Inspired by their study, the performance of the proposed co-
transfer learning algorithm is also evaluated on some real
world examples pertaining to cross-resolution face matching.
In our experiments, some real world examples are collected
from different sources on the internet which includes two
individuals from Boston bombing [66], [67], four individuals
from London bombing [1] and one individual from Mumbai
terrorist attack [2]. Fig. 12 shows the low resolution probes and
corresponding gallery images considered in the experiment.
In this additional experiment for evaluating the performance
with these seven real world examples, we appended these
images to the SCface database for co-transfer learning. The
experiments are performed with gallery image resolution of
72 x 72 pixels and query image resolution of 32 x 32 pixels.
Each individual has one image in the gallery and one or
more low resolution images as probe. Further, an extended
gallery of 6534 individuals is created by using frontal images
acquired from a law enforcement agency and appending it
to the gallery of the SCface database. The performance of
the proposed co-transfer learning algorithm is also compared
with COTS for matching 15 probe images corresponding to
these 7 real world cases. The results in Table IX show that the
proposed algorithm consistently retrieves the correct match at
a lower rank than COTS’ on all the cases. The results validate
our initial assertion that the proposed co-transfer learning
algorithm can efficiently be coupled with surveillance systems
to assist law enforcement agencies.

7Since, the eye region is occluded in some of the probe images, COTS is
not able to process such cases (represented as NP - Not Processed).
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TABLE IX
RESULTS FOR MATCHING REAL WORLD EXAMPLES AGAINST A LARGE SCALE GALLERY OF 6534 INDIVIDUALS. VALUES IN THE TABLE REPRESENTS THE
RANK AT WHICH THE CORRECT IDENTITY IS RETRIEVED. NP REPRESENTS THE CASES WHICH ARE NOT PROCESSED BY THE COTS.

I1d 3

Fig. 12.  Real world cases for cross-resolution face matching: (a) low
resolution probe images and (b) corresponding gallery images.

C. Performance on Point and Shoot Still Challenge Database

The performance of the proposed algorithm is also evaluated
on the still matching challenge of Point and Shoot Challenge
(PaSC) [25] database. The experiments are performed on
the frontal part of the still face database and the predefined
protocol of PaSC is followed except the resolution of images.
In PaSC, the size of both gallery and probe images is same;
however, the proposed algorithm requires the two to be of
different resolutions. Therefore, we have set the probe image
size to 24 x 24 whereas the gallery images are of original
size 72 x 72. Under this environment, the proposed algorithm
yields the verification accuracy of ~47% at 1% false accept
rate and the COTS yields a significantly lower accuracy of
~33%. It is to be noted that these results cannot be compared
with the ones provided in [25] because the resolution of the
probe images is different from our experiments.

VII. CONCLUSION AND FUTURE WORK

The paper introduces a co-transfer learning framework
which seamlessly combines the co-training and transfer learn-
ing paradigms for efficient cross-resolution face matching.
During training, the proposed framework learns to match high
resolution face images in the source domain. This knowledge
is then transferred from the source domain to the target domain
to match low resolution probes with high resolution gallery.
The proposed framework builds ensembles from the weighted
combination of source and target domain classifiers on two
separate views. Two ensembles trained on separate views
transform the unlabeled probe instances into pseudo-labeled
instances using co-training. These pseudo-labeled instances
are utilized for updating the decision boundary of the target
domain classifier, thus, transferring knowledge from the source
domain to the target domain. Further, dynamically updating

Algorithm Probe Id
la | 1b [ 2a [ 2b | 2c | 3a [ 3b [4a | 5a [ 5b [ 6a | 6b | 6¢c [ 7a | 7b
CTL 7 29 8 17 1 15 5 19 | 17 1 1 10 | 18 2 4
COTS NP | NP | I1 | 26 3 28 9 22 | NP 1 1 14 | NP | 4 NP
% = the weights assigned to each classifier facilitates gradual
‘a / | shift of knowledge from the source to target domain. The
d1  1d2 amalgamation of transfer learning and co-training helps to

transfer knowledge from the source to target domain with
probe instances as and when they arrive. Comprehensive
analysis, including comparison with existing cross-resolution
face matching algorithms, super-resolution techniques, and a
commercial face recognition system, is performed for different
gallery-probe resolutions ranging from 216x216 to 16x16
pixels. The proposed co-transfer learning framework provides
significant improvement for cross-resolution face matching on
different surveillance quality face databases. As future research
directions, this research can be extended for addressing cross
resolution face recognition under face age and weight, dis-
guise, and plastic surgery variations. It can further be extended
for cross resolution face recognition in videos where several
of frames can be of very poor quality and resolution [68].
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