
SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Improving Cross-resolution Face Matching using

Ensemble based Co-Transfer Learning
Himanshu S. Bhatt, Student Member, IEEE, Richa Singh, Senior Member, IEEE, Mayank Vatsa, Senior

Member, IEEE, and Nalini K. Ratha, Fellow, IEEE

Abstract—Face recognition algorithms are generally trained
for matching high resolution images and they perform well for
similar resolution test data. However, the performance of such
systems degrade when a low resolution face image captured in un-
constrained settings such as videos from cameras in a surveillance
scenario are matched with high resolution gallery images. The
primary challenge here is to extract discriminating features from
limited biometric content in low resolution images and match it
to information rich high resolution face images. The problem of
cross-resolution face matching is further alleviated when there
is limited labeled positive data for training face recognition
algorithms. In this paper, the problem of cross-resolution face
matching is addressed where low resolution images are matched
with high resolution gallery. A co-transfer learning framework
is proposed which is a cross-pollination of transfer learning
and co-training paradigms and is applied for cross-resolution
face matching. The transfer learning component transfers the
knowledge that is learnt while matching high resolution face
images during training for matching low resolution probe images
with high resolution gallery during testing. On the other hand,
co-training component facilitates this transfer of knowledge by
assigning pseudo labels to unlabeled probe instances in the
target domain. Amalgamation of these two paradigms in the
proposed ensemble framework enhances the performance of
cross-resolution face recognition. Experiments on multiple face
databases show the efficacy of the proposed ensemble based
co-transfer learning algorithm as compared to other existing
algorithms and a commercial system. In addition, several high
profile real world cases have been used to demonstrate the
usefulness of the proposed approach in addressing the tough
challenges.

Index Terms—Face recognition, cross resolution, transfer
learning, co-training, co-transfer learning.

I. INTRODUCTION

It is generally believed that face recognition by computers

is a solved problem in many scenarios such as user centric ap-

plications including face tagging in Google Picasa, Facebook

and screen/device unlocking in Android and Windows-based

systems. While significant advances have been made in last

two decades, unconstrained face recognition is yet to benefit

from these advances to be useful in real world applications.

One such example is face recognition in low resolution surveil-

lance images. With advancements in technology, surveillance

cameras now have a profound presence and are widely used in

security and law enforcement applications. There are several
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instances where surveillance videos have helped agencies in

apprehending individuals who have committed crime or iden-

tify individuals with the intent to commit crime. For example,

in 2005 subway bomb blasts in London [1], CCTV footage

helped law enforcement officers in identifying the bombers.

In 2008 Mumbai terrorist attacks [2], surveillance cameras

installed at different locations (CST railway station, Taj Palace,

and Trident hotels) helped the agencies to track the activities

of terrorists and later identify them. In the 2010 car bomb

case at Times Square [3], the surveillance footage captured an

unidentified individual leaving the car with explosives. Later,

widespread distribution and manual investigation of the video

helped the investigating agencies to apprehend the individual.

Fig. 1. Illustrating the difference in matching (a) low resolution and high
resolution images, (b) two high resolution and low resolution images.

In all these cases, surveillance cameras could not foil the

terrorist attacks, however, they served as the primary evidence

in leading the investigation and also recognizing the individu-

als at the end. It is therefore desirable to build a system where

surveillance cameras coupled with a face recognition algorithm

can be used to automatically identify individuals from a

watch-list. Along with the challenges of pose, expression,

illumination [4], aging [5], disguise [6], [7], and plastic surgery

[8], [9] in face recognition, matching a watch-list photograph

to an image obtained from surveillance camera also requires

the capability of matching across resolution. For example,

the watch-list photograph could be a high resolution image
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Fig. 2. Illustrates the challenge in matching low resolution images when
coupled with other covariates. Low resolution challenge (a) alone, (b) with
pose, (c) with illumination, and (d) with expression.

whereas the surveillance camera images are generally low

resolution images. As shown in Fig. 1, even if both the images

are frontal, the information content in both the images could

be significantly different. The presence of pose, illumination,

and expression along with different resolution could further

exacerbate the problem, as shown in Fig. 2.

The conditions in which a face recognition algorithm is

trained are referred to as the source domain where the avail-

ability of large training data helps the algorithm to efficiently

learn the task. In the source domain, face recognition algo-

rithms are trained to match high resolution images. However,

for surveillance applications, the probe data i.e., the target

domain, comprises low resolution face images and the gallery

contains high resolution face images. Gallery represents im-

ages in the database and probe represents the query images.

Source domain refers to scenario where both gallery and probe

images are high resolution images while target domain repre-

sents scenario where gallery is always of higher resolution than

the probe image. Under these variations, the performance of

a biometric system degrades because it is unable to efficiently

utilize the knowledge learned in the source domain and there

is a scarcity of labeled low resolution data that can be used

for training the algorithms. Obtaining sufficient labels for the

target data is time consuming, requires human effort, and very

expensive. However, there is an abundance of unlabeled low

resolution data in target domain during testing.

In our preliminary work [18], we made this observation

and formulated the problem of cross-resolution face matching

where sufficient labeled data is available in source domain

and only a few labeled instances are available from the

target domain. This research extends the prior work [18] and

proposes a generalized co-transfer learning (CTL) framework

which is a cross-pollination of transfer learning [19] and co-

training [20]. The framework integrates transfer learning and

co-training in a non-separable manner to efficiently transfer

the knowledge from the source domain to the target domain

with sequentially available unlabeled instances from the target

domain:

• transfer learning is used to leverage the knowledge

learned in the source domain for efficiently matching low

resolution probes with high resolution gallery in the target

domain.

• co-training is used to enable transfer learning with unla-

beled probe instances from the target domain by assigning

pseudo-labels to probes.

In face recognition literature, to the best of our knowledge,

this is the first work that leverages unlabeled probe instances to

facilitate knowledge transfer in an ensemble based algorithm.

The performance of the proposed framework is evaluated in a

cross-resolution face recognition application and the compara-

tive experiments are performed on four face databases, namely,

the CMU Multi-PIE [21], SCface [22], ChokePoint [23], and

MBGC v2 video challenge [24] databases. The results are also

presented on some real world samples (surveillance images)

and recognition is performed using the proposed co-transfer

learning algorithm against a large gallery database of 6534

subjects. Finally, the results on still-frontal matching challenge

of Point and Shoot Challenge (PaSC) database [25] are also

presented. The results show that the proposed algorithm out-

performs existing algorithms including FaceVACS which is a

commercial face recognition system.

II. LITERATURE REVIEW

The literature review is divided into three parts: (1) cross-

resolution face recognition, (2) co-training, and (3) transfer

learning.

A. Review of Cross-resolution Face Recognition Literature

In literature, several approaches have been proposed to

match cross-resolution face images. As shown in Table I,

these algorithms can be classified into two categories: super-

resolution and transformation based approaches. Fig. 3 il-

lustrates the broad categorization and the steps involved in

cross-resolution face recognition approaches. Super-resolution

based approaches for cross-resolution matching enhance the

low quality probe image before recognition. On the other

hand, transformation based approaches extract features that

are resilient to resolution changes and match cross-resolution

face images. Some of the transformation based approaches

also perform resolution invariant transformations either in the

image space or the feature space for matching.

Super-resolution based approaches: Huang and He [10]

proposed to build a coherent subspace between the PCA

features of high resolution (HR) and low resolution (LR)

images mapped using the radial basis functions for recognition.

Baker and Kanade [26] proposed an algorithm to apriori

learn the spatial distribution of image gradients to enhance

the resolution of local features before matching. Chakrabarty

et al. [27] proposed a learning based method to super-resolve

face images with kernel principal component analysis-based

prior model. Chang et al. [28], [29] formed geometrically

similar manifolds using local facial patches in the low and

high resolution images. They used training images to estimate

the high-resolution embedding and construct a smooth super-

resolved image. Yang et al. [30] proposed a super resolution
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TABLE I
EXISTING ALGORITHMS FOR CROSS-RESOLUTION FACE IMAGE MATCHING.

Approach Technique Databases Gallery/probe resolution

Super-resolution

Coherent features [10] FERET, UMIST, ORL 72×72 / 12×12
Multi-modal tensor face [11] AR, YALE, FERET 56×36 / 14×9

S2R2 [12] Multi-PIE, FERET, FRGC v.2 24×24 / 6×6
Relationship learning [13] FRGC v.2 64×48 / 28×24

Transformation

LFD [14] FERET 88×80 / 33×30
Coupled locality preserving mapping (CLPM) [15] FERET 72×72 / 12×12
Synthesis based LR face recognition[16] CMU-PIE, FRGC v.2 48×40 / 19×16
MDS [17] Multi-PIE 48×40 / 12×10

Fig. 3. Broad view of cross-resolution face matching approaches. (a) Super resolution and (b) transformation based approaches.

approach by representing local patches as a sparse linear com-

bination of elements from high resolution images. In addition

to these local models, Liu et al. [31] integrated a holistic

parametric and a local nonparametric model using two-step

statistical modeling for face hallucination. It was observed that

super-resolution approaches, due to environmental variations

and distortions, failed to significantly improve the recognition

performance. It is our assertion that the primary objective of

super-resolution is to obtain a good visual reconstruction from

low resolution face(s), and these algorithms are generally not

intended for recognition. However, there are some approaches

that simultaneously optimize both super resolution and face

recognition. Jia and Gong [11] combined super-resolution

and face recognition by computing a maximum likelihood

identity parameter vector in high-resolution tensor space for

recognition. Further, Hennings-Yeomans et al. [12] proposed

an approach where facial features were included in a super-

resolution method as the prior information for simultaneous

reconstruction of super-resolved images. Recently, Zou and

Yuen [13] proposed a super-resolution technique based on the

relationship between the high-resolution image space and the

very low resolution image space. Their technique improved

face recognition performance for the very low resolution

problem.

Transformation based approaches: Unlike super-resolution,

another method to match cross-resolution images is to down-

sample high resolution images to the level of low resolution

images before matching. However, information useful for face

recognition such as texture, edges, and other high frequency

information is compromised while downsampling the images.

To address this problem, Li et al. [15] proposed to project both

high resolution and low resolution images to a feature space

using coupled mappings. Biswas et al. [32] proposed a mul-

tidimensional scaling approach to simultaneously transform

the features from high resolution gallery and low resolution

probe images. The Euclidean distance between the trans-

formed feature vectors approximates the distance computed

when the probe images were captured at similar resolution

as that of the gallery images. Researchers have also studied

that the phase and magnitude in frequency domain can be

used as a resolution invariant representation for efficiently

matching cross-resolution face images. Lei et al. [14] proposed

a local frequency descriptor based on the magnitude and

phase information to match cross-resolution face images in

the frequency domain. Shekhar et al. [16] proposed a gen-

erative approach using the information from high resolution

gallery to match low resolution probe images with illumination

variations. Lei et al. [33] proposed a coupled discriminant

analysis for heterogeneous face recognition (matching high

vs. low resolution images). To maintain the discriminative

power and generalizability of their approach, they utilized

multiple samples from different resolutions along with locality

information in the kernel space.

B. Review of Co-training Literature

In co-training, as proposed by Blum and Mitchell [20], two

classifiers that are trained on separate views (features) co-train

each other based on their confidence in predicting the labels.

Nonetheless, success of a co-training framework is susceptible

to various assumptions. Blum and Mitchell [20] have shown

that two classifiers should have sufficient individual accu-

racy and should be conditionally independent of each other.

Later, Abney [46] has shown the weak dependence between

the two classifiers can also guarantee successful co-training.

Wang and Zhou [47] reported the sufficient and necessary

condition for success of a co-training framework. Co-training

has been used in several computer vision applications with



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 4

TABLE II
SOME REPRESENTATIVE APPROACHES RELATED TO THE PROPOSED ALGORITHM.

Authors Technique Application

Zhu et al. [34] Heterogeneous transfer learning using matrix factorization Classifying image and text data

Quattani et al. [35] Sparse prototype image representation Recognizing visual categories

Ahmed et al. [36] Hierarchical feed-forward model Recognizing visual categories

Geng et al. [37] Domain adaptation metric learning Face recognition & web image annotation

Wang et al. [38] Dyadic knowledge transfer using a non-negative matrix tri-factorization Computer vision applications

Siyu et al. [39] Subspace transfer learning for kinship verification Kinship verification using faces

Chen et al. [40] Transferring informative knowledge for learning expression models Learning person-specific facial expression model

Bhatt et al. [41] Online co-training in SVMs using two independent feature representations Face Verification

Cao et al. [42] Transfer learning via generative Bayesian model with KL divergence Face Verification

Ng et al. [43] Co-Transfer Learning using a joint transition probability graph based on co-
occurrence of the data

Classifying image and text data

Zhao and Hoi [44] Ensemble based transfer learning with incremental labeled data Text classification

Guo and Wang [45] Domain adaptive input-output kernel learning Recognizing visual categories

Proposed
Co-transfer learning: Ensemble based transfer leaning using incremental unla-
beled target domain data with co-training

Face recognition

very limited exposure in biometrics. However, in biometrics

literature, unlabeled data has been used primarily for updating

the templates [48], [49], [50]. Poh et al. [51] performed a study

on the goal of semi-supervised learning where they focused on

some of the challenges and research directions for designing

adaptive biometric systems. Classifier update using co-training

is explored by Bhatt et al. [41] where the biometric classifiers

are updated using labeled as well as unlabeled instances.

C. Review of Transfer Learning Literature

Transfer learning has been explored in many computer

vision applications. Zhu et al. [34] proposed a heterogeneous

transfer learning framework that utilized annotated images

from the web as a bridge to transfer knowledge between text

and images using a matrix factorization approach. Quattoni et

al. [35] proposed a method for learning a sparse prototype

image representation for transfer across visual categories.

Their approach used a large set of unlabeled data and a kernel

function to form a representation. Ahmed et al. [36] proposed

a hierarchical feed-forward model for visual recognition using

transfer learning from pseudo tasks which include a set of

pattern matching operations constructed from the data. Geng

et al. [37] proposed a domain adaptation metric learning by

introducing a data dependent regularization to conventional

metric learning in the reproducing kernel Hilbert space. This

minimized the empirical maximum mean discrepancy between

different domains. Wang et al. [38] proposed dyadic knowl-

edge transfer which is a non-negative matrix tri-factorization

based approach to transfer cross-domain image knowledge for

the new computer vision tasks. In face recognition or related

domains, transfer learning has been applied to verify kinship

using face images through subspace transfer learning [39].

Chen et al. [40] also proposed to learn a person-specific facial

expression model by transferring the informative knowledge

from other people. Their approach allows to learn an accurate

person-specific model for a new subject with only a small

amount of person specific data. Most of the transfer learning

techniques work in offline manner and assume that the data

from the target domain is available upfront. Table II also lists

some of the closely related approaches to the proposed co-

transfer learning algorithm. Cao et al. [42] proposed a transfer

learning approach for face verification using a simple Bayesian

model. Their main idea was to minimize the KL divergence

between the source and target domain distributions to enhance

the sharing of information. Ng et al. [43] proposed a co-

transfer learning algorithm using a graph based method to

link different feature set using a joint transition probability

graph. Their approach is a supervised approach that transfers

knowledge across different domains based on the affinities

computed using co-occurrence information. Bhatt et al. [41]

proposed a semi-supervised online co-training approach to

update the classifier’s decision boundary using labeled as well

as unlabeled information for face verification. Zhao et al. [44]

proposed an online transfer learning (OTL) framework where

knowledge is transferred from source domain to target domain

classifier within an ensemble in a supervised manner using

incremental labeled instances from the target domain. The

OTL framework forms the basis of the proposed CTL algo-

rithm. Compared to co-training and transfer learning research

directions, the proposed CTL algorithm is different in the sense

that it is an incremental semi-supervised approach that uses

few labeled and large unlabeled data to transfer knowledge

within an ensemble. Co-training is used to transform unlabeled

incremental data from the target domain into pseudo labeled

data to facilitate transfer learning. In this research, transfer

learning and co-training are jointly used to transfer the knowl-

edge learnt in the source domain (with labeled samples) to the

target domain (with unlabeled samples), as shown in Fig. 4.

III. CO-TRANSFER LEARNING FRAMEWORK

We, humans, have innate abilities of transferring knowledge

between related tasks. It is observed that if the new task is

closely related to the previous learning, humans can quickly

transfer this knowledge to perform the new task. However,

given some prior knowledge in a related task, traditional

algorithms are unable to adapt to a new task and have to

learn the new task from the beginning. Generally, they do not

consider that the two tasks may be related and the knowledge

gained in one may be used to learn the new task efficiently in

lesser time. Transfer learning attempts to mimic this human

behavior by transferring the knowledge learned in one or

more source tasks and use it for learning the related target

task. Several approaches have been proposed for transfer

learning and they can be categorized as 1) inductive, 2)
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transductive, and 3) unsupervised transfer learning. Based on

the domain representation, transfer learning approaches can

be further categorized into homogeneous and heterogeneous

transfer learning. The source and target domains share same

feature space in the former whereas feature space is different

in the later one. For a more detailed discussion on different

transfer learning approaches, readers are directed to [19].

Generally, labeled data in target domain is scarce and

obtaining labels for the target data is time consuming and

expensive in most real world scenarios; therefore, it is difficult

to learn a model for the target data. On the other hand, large

amount of unlabeled data, available in the form of probe, can

be leveraged to learn the model. There are some existing semi-

supervised approaches for face recognition [52], [53], [54],

[55] that utilize few labeled and ample amount of unlabeled

data for enhancing face recognition performance. Many of

these semi-supervised approaches are used for template update

such as semi-supervised PCA [49], [56] or LDA [57]. There

are few approaches [41], [52] that update/retrain the model

with few labeled and large unlabeled data. Mostly, existing

semi-supervised algorithms require entire unlabeled data up-

front and do not perform well for single sample per subject.

The proposed co-transfer learning algorithm builds on the

limitations of existing approaches to address the challenge of

single sample per subject and performs transfer learning in

online manner with sequential unlabeled data available from

the target domain. Transfer learning and co-training are jointly

used to transfer the knowledge learned in the source domain to

the target domain with unlabeled instances, as shown in Fig. 4.

Co-training to update the classifiers has been explored by Bhatt

et al. [41] where biometric classifiers are updated using labeled

as well as unlabeled instances. However, to the best of our

knowledge, it is the first algorithm that uses transfer learning

for face recognition as a semi-supervised approach using few

labeled and a large number of unlabeled probe instances.

Fig. 4. Illustrating the cross-pollination of transfer learning and co-training
for transferring knowledge from source domain to target domain.

The proposed framework is a generalized framework that

can be applied to any classifier which allows re-training with

incremental data. In this research, we have applied the concept

of co-transfer learning to support vector machine (SVM). Re-

training the SVM classifier in batch mode is computationally

expensive [58] and may not be feasible in real-wold appli-

cations. Some approaches have been proposed that allow re-

training the SVM classifier using only the previous support

vectors and new incremental data points. A method to add or

remove one sample at a time to update SVM is proposed in

[59] where a solution for N ± 1 samples can be obtained

using the N old samples and the sample which is to be

added or removed. In the proposed approach, SVM is first

trained using an initial training set and a decision hyperplane

is obtained. This hyperplane is then updated using the new

available instances and the previous support vectors. For more

details on updating SVM classifiers with new incremental data,

readers are directed to [41], [58], [59].

Transfer Learning: In face recognition, the classifiers such

as SVM, are learned using training data (from the source

domain) while the performance is evaluated on a separate

unseen test data (the target domain) which may have different

properties and follow a different distribution compared to

the training data. Consider a scenario where there are two

classifiers, one trained using the source and another trained

using the target domain data. During training, there is a large

labeled data in the source domain i.e., for matching HR probe

with HR gallery images (source domain) but only a few labeled

instances are available in the target domain, i.e., for matching

LR probes with HR gallery images. In such a case, the source

domain classifier alone may not efficiently classify the test

instances because of the variations in data distribution of

source and target domains. Since the classifier in target domain

is trained using only a few labeled samples, it is not able to

efficiently classify the test instances. It has to learn/update its

decision boundary with the incremental data available in the

target domain. Both the classifiers are individually insufficient

to classify the test data from the target domain. Therefore, in

the proposed algorithm, an ensemble is built as a weighted

combination of the source and target domain classifiers. It

efficiently classifies test instances and subsequently transfers

the knowledge from the source domain to the target domain as

and when the data from the target domain is available. For this,

the two classifiers trained on the source and target domains are

combined to efficiently classify the unlabeled probe instances.

Fig. 5. Block diagram illustrating the steps involved in the proposed co-
transfer learning framework.

As shown in Fig. 5, the source domain classifiers (CS
j )

are trained using sufficient HR labeled training data de-

noted by DS
L = {(uS

1 , z1), (u
S
2 , z2), ..., (u

S
n , zn)}. Every ith

instance, ui has two views {xi,1, xi,2} for the training label

zi ∈ {−1,+1}; here xi,1 and xi,2 represent the input vectors

obtained from two separate views (features). {−1} refers to

the impostor class where the query and probe images belong to

different subjects and {+1} refers to the genuine class where

the gallery and probe images belong to the same subject. The

two views are utilized for co-training (explained later). The



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 6

target domain classifiers (CT
j ) are initially trained on a few la-

beled training instances from the target domain represented as

DT
L={(uT

1 , z1), (u
T
2 , z2), ..., (u

T
m, zm)}. Here, n and m are the

number of training instances in the source and target domains

respectively, such that n > m and j = 1, 2 represents the view

(feature). Let a set of r unlabeled probe instances in the target

domain be represented as DT
U={(u′T

1 ), (u
′T
2 ), ..., (u

′T
r )}. An

ensemble prediction function, denoted as Ej , is constructed for

each view. Ej is a weighted combination of the source domain

classifier, CS
j , and the target domain classifier, CT

j , with

wS
i,j and wT

i,j representing the weights of the source domain

classifier and target domain classifier for the ith instance of

the jth view respectively. For the ith unlabeled probe instance

in the jth view, the ensemble function Ej predicts the label,

Ej(xi,j) → yi,j . For the ith instance in the target domain u′

i,

class label is predicted by the ensemble as given in Eq. 1.

yi,j = sign(wS
i,j Π(CS

j (u
′

i)) + wT
i,j Π(CT

j (u
′

i))−
1

2
) (1)

where Π is a normalization function such that Π(x) =
max(0,min(1, x+1

2
)). Initially, both the weights are set to 0.5

so that each classifier contributes equally within an ensemble

and gradually, they are automatically adjusted to emphasize

the contribution from the updated target domain classifiers in

an ensemble. As proposed by Zhao and Hoi [44], the two

weights are updated dynamically as shown in Eqs. 2 and 3.

wS
i+1,j =

wS
i,jhi(C

S)

wS
i,jhi(CS) + wT

i,jhi(CT
j )

(2)

wT
i+1,j =

wT
i,jhi(C

T )

wS
i,jhi(CS) + wT

i,jhi(CT )
(3)

where wS
i+1,j and wT

i+1,j are the updated weights and hi is

defined as:

hi(C) = exp{−η l(Π(Ci),Π(ŷi))}, (4)

η = 0.5, l(y, ŷ) = (y − ŷ)2 is the square loss function, y

is the predicted label and ŷ is the pseudo label provided by

co-training (explained later).

Co-training: As mentioned previously, unlabeled probe

instances are available in abundance and can be utilized to

update/learn the classifiers in the target domain. However,

it is required to obtain the labeled target data. Obtaining

labeled training instances from the target domain is difficult,

expensive, and requires human effort. In biometrics, there are

situations when only a small set of labeled data is available

for training while a huge amount of unlabeled data is read-

ily available as probe. This situation is similar to a semi-

supervised learning scenario, where co-training [20], [41] has

proven beneficial as it can be used to transform unlabeled

probe instances into pseudo-labeled training instances. In the

proposed co-training approach, a small initial labeled set is

available from the target domain for training the classifiers

and a large number of unlabeled instances are available as

probe. It assumes the availability of two ensemble functions

(classifiers), E1 and E2, trained on separate views (features)

where each ensemble function has sufficient (better than

random) accuracy. If the first ensemble confidently predicts

genuine label for an instance while the second ensemble pre-

dicts impostor label with low confidence, then this particular

instance (with pseudo label provided by the first ensemble) is

utilized for updating the second ensemble and vice-versa. In

this research, the confidence of prediction for an instance on

the jth view1, denoted by αj , is measured as the distance of

that instance from the decision boundary which is computed

as shown in Eq. 5.

α =
R

|v|
, (5)

where, R is the un-normalized output from the SVM, v is

the weight vector for the support vectors and |v| = vT v. For

confidently predicting an instance to belong to genuine class,

the distance from the decision hyperplane should be greater

than the genuine threshold (Pgen). Similarly, an instance is

confidently predicted as impostor if the distance from the

hyperplane is greater than the impostor threshold (Pimp). Here

Pgen refers to genuine threshold when comparing for genuine

class and Pimp to impostor threshold when comparing for

impostor class. Since SVM is used for classification, a genuine

threshold is computed as the distance of the farthest support

vector of genuine class. Similarly, an impostor threshold

is computed as the distance of the farthest support vector

of impostor class. Varying the thresholds will change the

number of instances on which the co-training is performed.

High threshold value implies conservative co-training while

smaller value of the threshold leads to aggressive co-training.

In this manner, unlabeled probe instances are transformed

into pseudo-labeled training instances which are then used to

update the ensembles. In an ensemble, knowledge is trans-

ferred by updating the decision boundary of the target domain

classifier CT
j using only the new incremental data as proposed

in [41].

Co-transfer: In the proposed framework, transfer learning

and co-training work concurrently to improve the target do-

main task with pseudo labels provided by co-training that lead

to transfer of knowledge from the source to the target domain.

Within each ensemble, the target domain classifier updates

its decision boundary [41] with every pseudo-labeled instance

obtained during testing. Moreover, the weights corresponding

to the source and target domain classifiers are also adjusted

dynamically using Eqs. 2 and 3. This scheme avoids the

need to learn the target domain classifiers from the beginning

and hence, makes the system scalable and computationally

efficient. Note that in the co-transfer learning framework,

only target domain classifiers are updated with pseudo-labeled

instances. The source domain classifiers do not need any

update because they are well trained using large amount of

labeled data available upfront in the source domain. The

proposed co-transfer learning framework is summarized in

Algorithm 1.

1View and features are used interchangeably in the paper.
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Algorithm 1 Co-transfer learning

Input: Initial labeled training data DS
L in the source domain,

a few labeled instances DT
L from the target domain. Un-

labeled probe instances DT
U from target domain (available

sequentially).

Iterate: j= 1 to 2 (number of views)

Process: Train classifiers CS
j and CT

j on jth view of DS
L

and DT
L respectively to construct ensemble Ej . Compute

confidence thresholds Pj for each view.

for i = 1 to r (number of probe instances) do

Predict labels: Ej(xi,j) → yi,j ; calculate αj : confidence

of prediction

if α1 > P1 & α2 < P2 then

Update CT
2 with pseudo-labeled instance {xi,2, yi,1)}

& recompute wS
2 and wT

2 .

end if.

if α1 < P1 & α2 > P2 then

Update CT
1 with pseudo-labeled instance {xi,1, yi,2)}

& recompute wS
1 and wT

1 .

end if.

end for.

end iterate.

Output: Updated classifiers CT
1 , CT

2 and weights wS
1 , wT

1 ,

wS
2 and wT

2 .

Generally, co-training is performed with two views to co-

train the participating classifiers by providing pseudo labeled

instances and appending the training set for classifiers trained

on each view. However, this can be generalized to multiple

views where the final pseudo label is assigned based on the

majority vote, similar to [60]. Likewise, the proposed co-

transfer learning algorithm can be generalized to accommodate

multiple views that may be extracted from other features

such as processing different channels in a color image as

separate views or adding more resolution invariant features

as separate views. However, incorporating more views may

increase computational requirements.

Error bounds: To analyze the effectiveness of the proposed

co-transfer learning algorithm, we compute the error bounds.

Using the square loss function l∗(y, ŷ) = (y − ŷ)2 and the

exponential weighting update function, bounds of an ensemble

are given as:

I
∑

i=1

l∗(wS
i Π(C

S
i ) + wT

i Π(C
T
i ),Π(ŷi)) ≤ 2ln(2) (6)

+min{

I
∑

i=1

l∗((Π(CS
i ),Π(ŷi)),

I
∑

i=1

l∗(Π(CT
i ),Π(ŷi))} (7)

where I is the number of instances, yi is the predicted label for

the ith instance, and ŷi is the pseudo label for the ith instance

provided by co-training. The above equation is derived by

following the proof in [44]. Using this, the error bounds of

an ensemble are derived as follows: The error at the ith step

is represented as |wS
i Π(C

S
i ) + wT

i Π(C
T
i ) − Π(ŷi)| ≥ 1

2
.

Therefore, we have

I
∑

i=1

l∗(wS
i Π(C

S
i ) + wT

i Π(C
T
i ),Π(ŷi)) = (8)

I
∑

i=1

(wS
i Π(C

S
i ) + wT

i Π(C
T
i ),Π(ŷi))

2 ≥
1

4
M (9)

Combining Eqs. 6 and 8, we have

1

4
M ≤ min

{

∑

CS ,
∑

CT
}

+ 2ln(2) (10)

where
∑

CS =
∑I

i=1
l∗(Π(CS

i ),Π(ŷi)) and
∑

CT =
∑I

i=1
l∗(Π(CT

i ),Π(ŷi)). For two ensembles, when the final

decision classification decision is based on their combination,

the error bounds M for the co-transfer learning algorithm are

given as:

min(ME1,ME2) ≤ M ≤ max(ME1,ME2) (11)

The primary objective of selecting two ensembles is to fa-

cilitate co-transfer learning as one ensemble provides pseudo

labeled training instances to the other. Therefore, the error

bounds of the proposed algorithm will lie between the error

bounds of the two participating ensembles as shown in Eq. 11.

Note that these error bounds are derived under the assumption

that the pseudo labels provided by co-training are correct.

IV. CO-TRANSFER LEARNING FOR CROSS-RESOLUTION

FACE RECOGNITION

In an operational scenario, training is performed in a

controlled environment; whereas during testing, a biometric

system encounters data from uncontrolled environment. Co-

training is particularly useful for recognizing cross-resolution

face images. Fig. 6 shows the block diagram of the proposed

co-transfer learning framework for matching cross-resolution

face images. First, the source and target domain classifiers

are trained on two views (features) and two ensemble func-

tions (E1 and E2) are built. One view is the local phase

quantization (LPQ)2 [61] and the second view is the scale

invariant feature transform (SIFT)3 [62]. LPQ operates on

the Fourier phase computed locally for a window in every

image position and utilizes local phase information extracted

using a short-term Fourier transform. In our experiments, same

parameters as proposed by Ahonen et al. [61] are used. SIFT

[62] is a scale and rotation invariant descriptor that generates

a compact representation of an image based on the magnitude,

orientation, and spatial vicinity of image gradients. In this

research, SIFT descriptor is computed in a dense manner on

pre-defined interest points. Both these views are resilient to

scale changes and can be effectively used for matching face

images with different resolutions. The two features provide

diverse information, one encodes the discriminative phase

information whereas the other encodes information from the

2Source code available at http://www.cse.oulu.fi/CMV/Downloads-
/LPQMatlab

3Source code available at http : //labelme.csail.mit.edu −
/Release3.0/browserTools/php/matlabtoolbox.php
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image gradients. LPQ and SIFT descriptors are normalized

to unit length. A second normalization step is performed by

suppressing any component larger than 0.2 down to 0.2 and

re-normalizing the vector to unit length. Finally, χ2 distance is

used to compare two corresponding LPQ and SIFT descriptors.

For normalizing face images, eye-coordinates are detected

using OpenCV’s boosted cascade of Haar-like features. Face

image is normalized with respect to the horizontal axis and the

inter-eye distance is fixed to 100 pixels for a 216×216 image.

Low resolution images are also normalized in a similar manner

where the inter-eye distance is normalized in proportion to the

image resolution4.

Initial training on labeled data from the source and target

domains: The co-transfer learning framework assumes that

during training, each subject has high resolution gallery-probe

pairs and a few subjects have corresponding low resolution

images from the target domain. For a given gallery-probe pair,

face images are tessellated into 3× 3 patches. LPQ and SIFT

descriptors are computed for each local patch and matched

using the χ2 distance measure. Distance scores corresponding

to local patches are vectorized to an input vector {ui, zi},

where zi ∈ {−1,+1} is the associated label. {+1} signifies

that the gallery-probe pair belongs to the same individual (i.e.

genuine pair) whereas {−1} signifies that the gallery-probe

pair belongs to images corresponding to different individuals

(i.e. impostor pair). Input vectors obtained by matching LPQ

descriptors of two high resolution images are utilized for

training the source domain SVM classifier (CS
1 ) on view 1.

On the contrary, the target domain SVM classifiers for view 1

are trained using one high resolution and one low resolution

images. The source domain and target domain SVM classifiers

are then combined to form an ensemble, E1. Similarly, the

SVM classifiers for view 2 (SIFT) are trained and the ensemble

function E2 is learned.

Co-transfer learning with unlabeled probes from the target

domain: Similar to the training phase, for matching a LR

probe with a HR gallery image, the images are tessellated into

non-overlapping local patches and LPQ and SIFT descriptors

are computed for each local patch. LPQ descriptors from the

corresponding local patches on the gallery and probe images

are matched using χ2 distance and the distance scores from

these local patches are vectorized to form an input vector u’ for

view 1. Similarly, an input vector corresponding to SIFT (view

2) is computed using the χ2 distance measure. Unlike training,

the instances obtained during testing are unlabeled. For every

query given to the biometric system, both the ensembles, E1

and E2, are used to classify the instance. If one ensemble

confidently predicts genuine label for an instance while the

other ensemble predicts impostor label with low confidence,

then this instance is added as a labeled re-training sample for

the second ensemble and vice-versa. The target domain SVM

classifiers (CT ) in the ensembles are updated with pseudo-

labeled probe instances obtained during testing. Further, the

weights for both source domain and target domain SVM

4For images on which the eye-detection failed because of low resolution,
normalization was performed manually.

classifiers are also updated with each pseudo-labeled probe

instance, as shown in Eqs. 2 and 3. Thus each ensemble

updates the target domain classifier of the other ensemble.

The final decision is computed by combining responses from

both the ensembles.

V. DATABASE AND EXPERIMENTAL PROTOCOL

The performance of the proposed co-transfer learning

framework is evaluated on four different databases, (1) CMU

Multi-PIE [21], (2) SCface [22], (3) ChokePoint [23], and

(4) Multiple Biometric Grand Challenge (MBGC) v.2 video

challenge database [24]. Fig. 7 show sample images from

all four databases used in this research are shown in Fig. 7.

The experiments are designed to resemble real world scenario

where ample training data is available in source domain to

train the classifiers for classifying the high resolution gallery-

probe pairs as genuine or impostor. However, only a few low

resolution probe and corresponding high resolution gallery

images are available for training the classifiers in the target

domain. To emulate such conditions, Table III lists the number

of high resolution gallery-probe pairs that are used for training

the classifiers in source domain and the number of low reso-

lution probe and corresponding high resolution gallery images

used for training classifiers in the target domain. The training

subjects in target domain are a subset of the training subjects

in source domain. Further, co-transfer learning and initial

training of source and target domain classifiers are performed

on non-overlapping subjects. To evaluate the efficacy of the

proposed framework, a joint adapt-and-test [44] strategy is

used which allows the data used for performance evaluation to

be concurrently used for model adaptation. It is to be noted that

the proposed framework is first used to classify an unlabeled

probe instance and based on the confidence of prediction, this

instance may be used as a pseudo-labeled training instance for

updating/re-training the ensemble. Therefore, the classification

is always performed on unseen instances which is the case with

most of the real world applications.

Fig. 7. Sample images from the (a) CMU Multi-PIE, (b) SCface, (c)
ChokePoint, and (d) MBGC v.2 video challenge databases.

CMU Multi-PIE [21] database comprises images from 337
individuals captured in four different sessions with varying

pose, expression, and illumination. For experiments, a subset
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Fig. 6. Block diagram for the co-transfer learning framework for cross-resolution face matching. (a) Illustrates the training process of the source and target
domain classifiers to build the ensembles and (b) co-transfer in the target domain with unlabeled probe instances.

TABLE III
EXPERIMENTAL PROTOCOL ON DIFFERENT DATABASES FOR CROSS-RESOLUTION FACE MATCHING. TRAINING SUBJECTS IN THE SOURCE DOMAIN

SPECIFIES THE TOTAL NUMBER OF SUBJECTS USED FOR TRAINING DIFFERENT ALGORITHMS. ∗ FOR CHOKEPOINT DATABASE, TRAINING OF SOURCE

AND TARGET DOMAIN CLASSIFIERS IS PERFORMED USING THE CMU MULTI-PIE [21] DATABASE. FOR EXPERIMENTS WITH CMU MULTI-PIE, IMAGES

ARE SYNTHETICALLY DOWN-SAMPLED TO THE DESIRED RESOLUTION USING LINEAR INTERPOLATION.

Database
No. of subjects in Training No. of subjects in Resolution range Covariates

Source domain Target domain Testing/Co-transfer learning (pixels) (apart from low resolution)

Multi-PIE [21] 100 40 237 216×216 - 16× 16 Illumination

SCface [22] 50 20 80 72×72 - 24×24 Camera distance, pose, & illumination

ChokePoint∗ [23] 50 20 29 216×216 - 16× 16 Pose, illumination & expression

MBGC v.2 [24] 60 30 87 216×216 - 16× 16 Pose, illumination, walking & talking

pertaining to 337 individuals with frontal pose and neutral

expression are selected; however, the gallery and probe images

vary in illumination conditions. For each subject, one high

resolution image is kept in the gallery and one low resolution

image is used as probe.

SCface database is a real-world surveillance database com-

prising images of 130 individuals captured in uncontrolled in-

door environment using multiple surveillance cameras placed

at different distances. For each subject, one high resolution

image is kept in gallery and five images captured from

different cameras are used as probe. SCface database contains

low resolution images ranging from 48× 48 to 24× 24 pixels

and experiments are performed without interpolating these

images. Therefore in the experimental protocol of the SCface

database, gallery and probe images vary from 72×72 to 24×24
pixels.

ChokePoint database is a video database captured un-

der real-world surveillance conditions. Three cameras placed

above the portals are used to capture individuals walking

through the portal. Images are captured with surveillance cam-

eras in unconstrained environment and include illumination,

expression, and pose variations. The database consists of 29
unique subjects and the videos are captured in two portals

with a time gap of about one month. Since there are only 29
subjects in the database, training of both source and target

domain classifiers is performed using the CMU Multi-PIE

database. For each subject in the ChokePoint database, one

high resolution image is used as gallery and five images are

used as probe.

MBGC v.2 video challenge database used in the experiments

contains multiple videos in standard definition (720 × 480
pixels) and high definition (1440 × 1080 pixels) format cor-

responding to 147 subjects are used. The database includes

videos where the user is walking or performing some activity.

Faces present in these videos have variations due to pose,

illumination, and expression. The faces extracted from video

frames are partitioned into the gallery and probe data sets (here

we ensure that gallery and probe images are from different

sessions i.e. from different videos of the person). Gallery

consists of single image per user and probe set comprises five

images from different sessions.

The application of matching cross-resolution face images

is more applicable in an identification (1: N matching) sce-

nario. Following the common protocol in literature [14], [16],

[17] the performance of the proposed framework is reported

on a closed set identification scenario. Further, to emulate

the conditions that the gallery is generally captured under

controlled conditions, the experiments are performed with

settings such that the resolution of gallery images is always

higher than the probe images. Experiments are performed with

single image per subject in the gallery. The performance is

reported in identification mode with 10 times repeated random

sub-sampling (cross-validations) for non-overlapping training-

testing partitions. Experiments are performed at different res-

olutions of gallery and probe images ranging from 216×216

pixels to 16×16 pixels. Face images in the databases are

available at different resolutions and are interpolated to the

nearest resolution in the experimental protocol using bi-cubic

interpolation.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

For cross resolution face matching, the performance of algo-

rithms degrade mainly due to the 1) difference in information

content between the high resolution gallery and low resolution

probes and 2) limited biometric information in face images

at low resolution. The proposed algorithm attempts to address
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these issues by using the knowledge learned for matching high

resolution images from the source domain to efficiently match

low resolution images from the target domain. The objective

of these experiments is to determine the effectiveness of the

proposed algorithm in transferring knowledge from the source

domain to target domain for cross resolution face matching.

For this, we compare the performance of the proposed algo-

rithm with different algorithms: (1) SIFT with SVM classifier

and LPQ with SVM classifier, referred to as SIFT and LPQ

in the results, (2) sum-rule score level fusion [63] of two

ensembles trained on the initial labeled data from the source

and target domains (referred to as ‘fusion’), (3) Multidimen-

sional Scaling algorithm (MDS) proposed by Biswas et al. [17]

for matching low resolution face images, (4) a widely used

commercial-off-the-shelf (COTS) face recognition algorithm,

FaceVACS, referred to as COTS, (5) three super-resolution

techniques, namely super-resolution-1 (SR-1, a standard bi-

cubic interpolation), super-resolution-2 (SR-25, a regression

based technique proposed by Kim and Kwon [64]), and super-

resolution-3 (SR-36, a sparse representation based approach

proposed by Yang et al. [30]), and (6) match score fusion

of the proposed algorithm with MDS [17] and COTS using

sum-rule [63].

A. Analysis

The results suggest that the proposed approach efficiently

matches cross-resolution face images by leveraging knowledge

learned in the source domain. It also validates our assertion

that co-training enables updating the decision boundary of

target domain classifiers with unlabeled probe instances as and

when they arrive.

• Cross-pollination of transfer learning and co-training

seamlessly transfers the knowledge learned in the source

domain for matching cross-resolution face images. Co-

training and transfer learning go hand-in-hand as co-

training provides pseudo labels for unlabeled test in-

stances which in-turn are used to update the target domain

classifiers within each ensemble.

• Updating the weights of the source and target domain

classifiers allows to dynamically adjust the contribution

from the constituent source and target domain classifiers

in an ensemble. Initially, equal weights are assigned to

both the classifiers; however with knowledge transfer,

weights of classifiers in the target domain become more

prominent. Table IV shows the number of instances

on which co-transfer learning is performed for different

databases. It also shows how the co-transfer learning on

unlabeled instances changes the weights of an ensemble

so as to better classify the target domain samples. The

experiments show that on all four databases combined,

co-training provides correct pseudo labels for about 98%

of the total instances.

• As more and more pseudo labeled instances are available,

the weights for the source and target domain classifiers

5Source code is available at authors webpage http://www.mpi-
inf.mpg.de/kkim/.

6Source code is obtained from http://www.ifp.illinois.edu/jyang29/.

TABLE IV
NUMBER OF INSTANCES ON WHICH CO-TRANSFER LEARNING IS

PERFORMED AND HOW THE WEIGHTS WITHIN AN ENSEMBLE SHIFT TO

EMPHASIZE THE CONTRIBUTION OF THE TARGET DOMAIN CLASSIFIER.

Database
# pseudo labels Weights after co-transfer

CT
1

CT
2

wS
1

wT
1

wS
2

wT
2

CMU Multi-PIE [21] 5184 4210 0.18 0.82 0.23 0.77

SCface [22] 7346 5268 0.21 0.79 0.27 0.73

ChokePoint [23] 456 540 0.33 0.67 0.36 0.64

MBGC v2 [24] 8136 6874 0.22 0.78 0.24 0.76

saturate. Co-transfer learning can converge when the

weight saturation occurs i.e., the weights of source do-

main classifiers become zero, and the emphasis is shifted

towards the target domain classifiers. Weight transfer can

saturate if and only if (i) the two views are independent

(property of co-training); (ii) co-training algorithm yields

correct pseudo labels (property of transfer learning); and

(iii) large number of samples are available for training.

Since, it is challenging to fulfill all three conditions in

a real world face recognition scenario, the proposed co-

transfer learning algorithm follows the concept of lifelong

learning [65] where the classifiers continue to learn and

adapt.

• The behavior of the proposed algorithm is further an-

alyzed and Fig. 8(a) illustrates sample cases where the

proposed co-transfer learning algorithm correctly rec-

ognizes the low resolution probe images. Examples in

Fig. 8(b) illustrate cases where the proposed algorithm

performs poorly. The poor performance can be attributed

to the fact that some of the pseudo labels assigned to

unlabeled probe instances may be incorrect leading to

negative transfer. However, the effect of negative-transfer

can be minimized by optimally selecting the confidence

threshold for co-training. High threshold value implies

conservative transfer while smaller value of the threshold

leads to aggressive transfer.

Fig. 8. Illustrating sample cases when the proposed approach (a) correctly
recognizes and (b) fails to recognize. All the examples are with probe (left
image) size 24×24 and gallery (right image) size 72×72.

The subsections below list the performance of individual

components of the co-transfer learning algorithm, compare the

performance of the proposed algorithm with transformation

and super-resolution based approaches, and finally reports the

performance on real word surveillance images and Point and

Shoot face database [25].

1) Performance of Individual Components: The proposed

co-transfer learning algorithm gains from individual compo-

nents such as co-training, transfer learning and ensembles.

To analyze the effect of transfer learning, additional experi-
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ments are performed, referred as “HR/LR matching + transfer

learning”. In this experiment, the source domain comprises

HR probe and gallery images. The target domain comprises

HR gallery, downsampled HR images as LR probes, and the

few labeled examples are available from the target domain. In

Tables V-VIII, “HR/LR TL (LPQ)” and “HR/LR TL (SIFT)”

refers to experiments on LPQ and SIFT features respectively.

“HR/LR TL LPQ + SIFT” refers to match score level fusion.

These experiments are trained in a supervised manner unlike

the proposed co-transfer learning algorithm which uses semi-

supervised learning. In this case, the ensembles on the two

views work independent of each other. The target domain

classifier and weights for the two components in an ensemble

are updated with labeled instances in the target domain and the

synthetic data obtained by downsampling the source domain

data. Similarly, to analyze the effect of co-training, “HR/LR

matching + co-training” experiments are performed, referred

to as “HR/LR CT” in Tables V-VIII. In this experiment, large

number of instances from the source domain are combined

with few labeled instances from the target domain for training

the classifier. Here, one classifier is trained on all the data

available for initial training. We use two classifiers trained

on two separate views of the training data which then co-

train each other with the additional unlabeled instances from

the target domain. The results in Tables V-VIII report the

performance of different components.

• HR/LR + transfer learning on the two views (i.e. SIFT

and LPQ) yields better or comparable results compared to

the individual ensembles and their fusion. It is observed

that HR/LR + transfer learning on LPQ gives better

performance as compared to HR/LR + transfer learning

on SIFT. However, the proposed CTL algorithm still

outperforms HR/LR + transfer learning on individual

views as it combines the complimentary information

from both the ensembles. HR/LR + transfer learning also

outperforms the MDS algorithm.

• The performance of the proposed CTL algorithm is better

than the performance of match score level sum rule fusion

of HR/LR + transfer learning on SIFT and LPQ. The

gain in performance is attributed to the fact that in the

proposed co-transfer learning, the two ensembles co-train

each other on the target domain instances. In HR/LR +

transfer learning on LPQ and SIFT, the two classifiers are

trained independent of each other. Moreover, the down-

sampled instances from the source domain do not greatly

facilitate the classifiers to improve the performance on

the target domain instances. This validates our assertion

that downsampling source domain instances may lead to

loss of information which is useful for face recognition.

• The performance of HR/LR + co-training is lower as

compared to HR/LR + transfer learning as the few labeled

target domain data is over shadowed by large number

of labeled source domain data during training. It is a

semi-supervised approach where unlabeled data from the

target domain has to be transformed into pseudo labeled

instances to co-train the classifiers on separate views.

2) Comparison with COTS and Transformation based Ap-

proaches: The performance of the proposed co-transfer learn-

ing (CTL) algorithm is compared with MDS [17], COTS,

individual ensembles of SIFT [62], and LPQ [61], and their

fusion. The results are also evaluated by fusing the proposed

CTL algorithm with other techniques such as MDS [17] and

COTS. Tables V-VIII show the results of the proposed and

existing algorithms with different combinations of gallery-

probe resolution on the four databases.

The Cumulative Match Characteristics (CMC) curves in Fig.

9 show the performance of different algorithms for matching

probe images of resolution 24×24 with gallery images of res-

olution 72×72. As compared to fusion of two ensembles, the

knowledge transfer from the source to target domain improves

the accuracy by at least 4-5%. During initial training, since the

source and target domain classifiers are trained independently,

the knowledge transfer is not available in an ensemble. It is

feasible only with pseudo labeled probe instances available in

the target domain during testing. Table V shows the results on

the CMU Multi-PIE database. The images in the CMU Multi-

PIE database are of very high quality and therefore the results

on this database may not be representative of cross resolution

face matching with surveillance quality databases. However,

since the previous research on low resolution face recognition

has shown the results on the CMU Multi-PIE database, we are

using this database (along with three surveillance databases) to

establish the baseline comparison with MDS. The results show

that for high resolutions, COTS performs better than the pro-

posed CTL and MDS algorithms. However, the performance

of the commercial system reduces significantly on reducing the

resolution of probe images. On the contrary, the performance

of CTL reduces at a lower rate and it yields better results than

COTS when the probe image is of resolution 16× 16.

Table VI shows the results on the SCface database [22].

The proposed algorithm yields promising results on the real-

world surveillance database and even outperforms COTS by at

least 24% on all combinations of gallery and probe resolutions.

Since the proposed algorithm uses SIFT and LPQ features

that are resilient to pose variations and changes in gray-

level intensities due to illumination variations, it inherently

addresses the problem of head-pose and illumination variations

in the SCface database. Moreover, the knowledge transfer with

unlabeled probe instances in the target domain facilitates to

efficiently classify the low resolution probes. Tables VII and

VIII illustrate the performance on the ChokePoint [23] and

MBGC v.2 video challenge [24] databases respectively. On

both the databases, the proposed algorithm performs better

than the existing algorithms and COTS for all combinations

of gallery-probe resolutions (except for gallery 216×216 and

probe 72×72, where COTS gives better performance).

From the results shown on the three surveillance databases,

it can be inferred that for high resolution gallery-probe pairs,

COTS performs better than the proposed algorithm. However,

for lower resolutions, the proposed algorithm yields better

results. The performance of transformation based approaches

such as MDS [17] degrades when the difference in resolution

of gallery and probe images increases (i.e. matching gallery

images of 216×216 with probe image of resolution 32×32 or
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TABLE V
RANK-1 IDENTIFICATION ACCURACY OF THE PROPOSED CTL ALGORITHM AND COMPARISON WITH EXISTING ALGORITHMS AND COMMERCIAL SYSTEM

ON THE CMU MULTI-PIE DATABASE [21]. SIFT WITH SVM CLASSIFIER AND LPQ WITH SVM CLASSIFIER ARE REFERRED TO AS SIFT AND LPQ
RESPECTIVELY, E1 REFERS TO ENSEMBLE 1, E2 REFERS TO ENSEMBLE 2, FUSION REFERS TO SUM RULE FUSION OF TWO ENSEMBLES, MDS REFERS TO

MULTIDIMENSIONAL SCALING ALGORITHM PROPOSED BY BISWAS et al. [17], COTS (COMMERCIAL-OFF-THE-SHELF) REFER TO FACEVACS, AND CTL
IS USED FOR THE PROPOSED CO-TRANSFER LEARNING ALGORITHM. HR/LR TL (LPQ) REFERS TO HR/LR MATCHING + TRANSFER LEARNING VIA

LPQ FEATURES AND HR/LR TL (SIFT) REFERS TO HR/LR MATCHING + TRANSFER LEARNING VIA SIFT FEATURES, HR/LR TL LPQ + SIFT
REFERS TO MATCH SCORE LEVEL FUSION OF THE TWO APPROACHES, AND HR/LR MATCHING + CO-TRAINING EXPERIMENTS ARE REFERRED TO AS

HR/LR CT.

Resolution Algorithm

Gallery Probe LPQ SIFT E1 E2 Fusion MDS CTL

HR/ HR/ HR/LR HR/
COTS

CTL+ CTL+
LR LR TL LR

MDS COTS
TL TL LPQ+ CT

(LPQ) (SIFT) SIFT

216×216

72×72 66.3 61.7 72.4 68.1 76.2 77.8 81.0 72.5 76.6 79.2 69.6 99.5 80.2 99.8
48×48 63.6 58.2 70.6 67.3 74.5 75.2 79.7 71.2 74.4 77.4 68.4 98.1 79.4 99.3
32×32 45.4 41.8 53.2 47.4 58.7 61.3 65.3 53.4 56.3 61.8 49.2 97.4 63.7 98.5
24×24 22.2 21.4 29.5 26.8 32.9 33.4 37.7 27.8 30.4 34.4 28.5 54.5 35.6 58.2
16×16 10.8 9.6 16.7 13.3 18.1 20.2 23.6 13.6 17.5 20.5 15.8 10.9 22.1 24.8

72×72

48×48 73.8 71.4 79.4 76.3 86.1 89.2 92.3 78.2 85.4 89.6 79.2 98.2 92.7 99.1
32×32 62.8 49.8 69.1 55.2 79.4 81.5 84.1 73.4 78.3 81.7 58.5 96.3 84.3 97.4
24×24 56.8 52.6 61.8 59.4 70.3 75.7 77.4 64.3 69.2 73.3 62.4 64.5 78.5 80.1
16×16 50.2 47.4 56.7 52.1 66.2 68.9 72.4 60.8 66.5 69.6 55.6 11.5 72.8 76.1

48×48
32×32 44.2 42.5 50.3 47.8 55.2 58.7 61.8 51.6 55.2 58.2 49.8 96.8 60.5 97.1
24×24 42.6 39.8 48.6 44.5 51.7 54.9 57.1 46.4 50.6 54.4 48.5 75.9 55.8 78.5
16×16 20.6 18.2 26.2 22.3 29.9 31.3 32.9 23.8 28.6 30.5 25.2 6.4 39.4 43.2

32×32
24×24 37.6 30.1 41.2 30.4 44.8 40.9 45.7 38.6 44.4 45.3 33.4 78.4 45.4 80.6
16×16 22.1 16.8 24.3 17.2 27.0 25.1 28.1 22.8 26.6 27.4 19.6 5.4 29.8 30.0

24×24 16×16 30.8 26.4 35.6 30.2 42.1 38.1 43.2 36.5 41.8 42.5 33.5 16.3 44.6 47.8

TABLE VI
RANK-1 IDENTIFICATION ACCURACY OF THE PROPOSED CTL ALGORITHM AND COMPARISON WITH EXISTING ALGORITHMS AND COMMERCIAL SYSTEM

ON THE SCFACE DATABASE [22].

Resolution Algorithm

Gallery Probe LPQ SIFT E1 E2 Fusion MDS CTL

HR/ HR/ HR/LR HR/
COTS

CTL+ CTL+
LR LR TL LR

MDS COTS
TL TL LPQ+ CT

(LPQ) (SIFT) SIFT

72×72
48×48 58.4 55.8 63.2 60.4 74.4 76.1 79.4 75.8 65.6 77.2 62.8 35.7 80.4 83.4
32×32 53.4 52.3 58.1 57.8 67.4 70.4 72.8 69.1 61.3 71.6 60.2 18.5 73.7 76.2
24×24 48.1 43.5 52.6 49.1 60.2 64.8 66.4 61.6 54.8 64.5 52.3 10.3 67.6 70.1

48×48
32×32 36.2 32.6 40.2 36.5 45.8 47.9 50.0 46.8 42.7 48.8 38.6 23.8 50.6 54.3
24×24 25.6 24.2 30.2 28.3 35.6 38.1 40.3 36.8 33.6 38.3 30.8 14.5 39.5 45.1

32×32 24×24 22.5 17.3 26.4 21.3 29.7 31.2 33.1 31.6 29.4 32.0 24.4 8.4 33.9 36.2

TABLE VII
RANK-1 IDENTIFICATION ACCURACY OF THE PROPOSED CTL ALGORITHM AND COMPARISON WITH EXISTING ALGORITHMS AND COMMERCIAL SYSTEM

ON THE CHOKEPOINT DATABASE [23].

Resolution Algorithm

Gallery Probe LPQ SIFT E1 E2 Fusion MDS CTL

HR/ HR/ HR/LR HR/
COTS

CTL+ CTL+
LR LR TL LR

MDS COTS
TL TL LPQ+ CT

(LPQ) (SIFT) SIFT

216×216

72×72 32.2 28.6 36.3 32.5 39.8 41.6 44.6 41.2 38.2 42.7 34.6 46.2 43.2 50.9
48×48 23.1 22.1 29.6 28.1 31.5 33.8 38.4 33.0 31.5 35.6 30.4 33.7 36.8 42.3
32×32 21.8 21.8 27.3 25.7 30.6 32.5 35.5 32.2 29.4 33.4 28.1 20.4 34.1 39.5
24×24 18.4 16.2 23.2 20.7 28.4 29.1 32.4 29.8 26.8 30.8 23.0 10.3 31.7 35.1
16×16 9.6 8.2 14.7 11.2 15.6 17.8 20.2 17.1 16.6 18.3 12.8 6.04 19.3 23.4

72×72

48×48 42.4 36.1 48.4 42.6 50.5 50.9 53.7 52.2 50.4 53.4 45.3 22.7 53.1 56.4
32×32 32.6 31.8 37.6 35.7 39.5 41.6 43.8 41.2 39.2 42.0 38.1 12.7 42.6 47.2
24×24 25.4 23.6 30.5 28.9 31.6 32.4 36.1 33.0 32.6 34.2 30.8 9.5 34.8 39.5
16×16 21.4 19.6 26.2 23.8 28.1 28.7 31.6 29.8 28.4 30.3 25.6 7.6 30.4 35.2

48×48
32×32 35.4 32.6 41.2 37.6 44.7 45.4 48.2 46.6 43.4 47.1 40.4 18.5 47.8 50.9
24×24 23.2 20.4 27.4 24.8 29.5 30.2 33.1 31.6 29.1 32.8 27.1 11.8 32.6 37.2
16×16 17.6 14.5 21.8 19.6 24.1 26.3 28.3 25.8 23.6 26.5 22.7 4.7 27.5 31.6

32×32
24×24 20.4 14.8 23.4 18.7 24.3 28.6 31.6 26.2 25.6 29.4 21.3 16.4 30.8 35.4
16×16 14.6 9.6 17.3 13.4 19.6 21.9 23.1 21.1 19.2 21.8 15.6 3.5 22.5 26.0

24×24 16×16 19.4 15.6 22.7 18.6 25.8 28.7 30.5 27.4 24.2 29.1 20.8 13.5 31.4 35.8
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TABLE VIII
RANK-1 IDENTIFICATION ACCURACY OF THE PROPOSED CTL ALGORITHM AND COMPARISON WITH EXISTING ALGORITHMS AND COMMERCIAL SYSTEM

ON THE MBGC V.2 VIDEO CHALLENGE DATABASE [24].

Resolution Algorithm

Gallery Probe LPQ SIFT E1 E2 Fusion MDS CTL

HR/ HR/ HR/LR HR/
COTS

CTL+ CTL+
LR LR TL LR

MDS COTS
TL TL LPQ+ CT

(LPQ) (SIFT) SIFT

216×216

72×72 27.2 25.4 30.8 28.2 33.4 36.5 40.7 32.6 35.3 37.0 30.4 44.3 39.2 47.3
48×48 22.6 24.8 26.2 23.7 29.3 30.8 33.5 28.4 31.8 32.5 25.5 31.4 32.7 36.8
32×32 20.8 17.2 23.6 20.9 26.1 28.4 32.6 25.7 28.4 30.1 22.7 18.5 31.4 35.2
24×24 17.6 15.4 21.5 18.6 23.7 25.3 28.1 23.5 25.2 26.8 20.8 9.8 26.9 29.5
16×16 9.6 8.8 12.5 10.1 14.8 16.8 19.5 14.2 16.5 18.2 12.4 5.7 18.7 20.8

72×72

48×48 38.2 33.6 43.1 39.7 45.3 46.8 49.3 45.8 47.8 48.1 42.1 21.2 48.6 50.7
32×32 29.2 26.4 33.4 29.1 35.9 38.3 41.9 35.1 38.1 40.8 31.5 11.4 40.5 45.2
24×24 23.6 20.4 26.3 22.5 28.7 29.8 33.2 28.2 31.2 32.0 24.4 8.7 31.5 36.9
16×16 19.6 16.8 22.7 19.4 24.8 26.5 29.5 24.8 26.6 27.5 21.3 6.2 28.1 33.5

48×48
32×32 33.6 31.2 38.4 33.1 40.5 44.3 47.4 40.7 42.7 45.6 35.8 17.2 46.8 48.7
24×24 21.4 20.2 24.6 21.3 25.8 27.6 30.3 26.6 27.6 28.4 23.5 10.2 29.4 33.5
16×16 16.5 14.8 18.2 15.7 20.3 24.1 26.5 20.4 22.5 24.1 17.4 4.2 26.1 27.9

32×32
24×24 17.8 12.6 20.7 15.6 22.3 27.1 28.6 22.6 24.2 26.2 17.7 14.8 29.2 33.2
16×16 12.6 8.6 14.6 10.9 16.3 19.8 21.3 16.2 18.4 19.8 12.3 3.1 20.6 23.9

24×24 16×16 18.4 14.8 20.4 16.1 23.5 27.3 28.2 22.5 25.6 27.9 18.0 11.9 29.4 31.8

Fig. 9. CMC curves showing the performance for matching 24×24 probe images with 72×72 gallery images on the a) CMU Multi-PIE, b) SCface, c)
ChokePoint, and d) MBGC v.2 video challenge databases.

Fig. 10. CMC curves comparing the performance of the proposed algorithm with three super resolution techniques on the (a) CMU Multi-PIE, (b) SCface,
(c) ChokePoint, and (d) MBGC v.2 video challenge databases. Probe images of 24×24 pixels are super-resolved by a magnification factor of three to match
the gallery resolution of 72×72 pixels.

lower). The transformations learned for such wide variations in

gallery-probe resolution may not be precise and thus degrade

the performance. Experimental results in Tables V-VIII also

show that sum-rule fusion [63] of the proposed algorithm with

COTS further enhances the performance of cross-resolution

face matching. This improvement in performance may be

attributed to the combined effect of COTS and CTL. COTS

efficiently addresses the difference in the information content

at higher resolutions, while CTL addresses the problem of

limited biometric information at low resolution images. On

the contrary, sum-rule fusion of the proposed CTL with

MDS [17] slightly degrades the performance as it may not



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 14

efficiently accommodate for large difference in information

content between the gallery-probe pairs.

For experiments on the CMU Multi-PIE database, there

is only a single gallery and a single probe image from

the target domain. The proposed co-transfer learning can

efficiently transfer the knowledge to better learn the target

domain decision boundary using only a single gallery and

single probe image (completely unseen training and testing).

However, this condition is slightly relaxed for experiments

with other three databases which contain multiple probes per

subject in the target domain and the classifiers may be trained

on subjects with these multiple probes in an incremental

manner. It is to be noted that the probe images are first

used for recognition (testing) and then used to update the

weights in an incremental semi-supervised manner. Therefore,

the probe images are incorporated in training only after they

have classified - thereby maintaining the unseen nature of

training and testing databases.

Fig. 11. Enhanced images obtained using three super-resolution techniques
(SR-1,SR-2, and SR-3). The leftmost column represents low resolution
(24×24) images and the rightmost column represents the original high
resolution images (72×72) from the (a) CMU Multi-PIE, (b) SCface, (c)
ChokePoint, and (d) MBGC v.2 video challenge databases.

3) Comparison with Super-resolution Approaches: In this

section, the performance of the proposed co-transfer learning

algorithm is compared with three super-resolution techniques

proposed in literature. For evaluating the effectiveness of

super-resolution techniques for matching low and high resolu-

tion face images, it is used as a pre-processing step to enhance

the quality of low resolution face images before matching.

Some examples of enhanced images are shown in Fig. 11. The

enhanced image is matched with high resolution gallery image

using different algorithms. The LPQ and SIFT features are

extracted from the super-resolved images and the performance

is computed after sum-rule fusion [63] of LPQ and SIFT

match scores computed using the χ2 distance metric. For

evaluating the performance with the proposed technique and

COTS, super-resolution based on sparse representation (SR-

3) is applied on the probe images and then feature extracting

and matching are performed using the CTL algorithm (referred

to as “CTL+SR”) and COTS (referred to as “COTS+SR”).

The target domain thus includes enhanced images obtained

using super-resolution. It is to be noted that transfer learning is

still applicable as super-resolution introduces several artifacts

that may affect the biometric information in a face image

and leads to variations in data distribution (of features or

match scores) between the source and target domains. The

classifiers in target domain are now trained to match the

enhanced probe images with HR gallery. For the experiments,

super-resolution is performed with a magnification factor of

three to match probe images of size 24 × 24 with 72 × 72
gallery images. CMC curves in Fig. 10 show that the proposed

co-transfer learning algorithm outperforms all three super-

resolution techniques by at least 11% on the CMU Multi-

PIE database, 10% on the SCface database, and 4% on the

ChokePoint and MBGC v.2 video challenge databases. Further,

as shown in Fig. 10, enhancing probe images using super-

resolution boosts the performance of both CTL and COTS.

It is observed that super-resolution minimizes the difference

in the resolutions of gallery and probe images. However, it

does not enhances the biometric information in face images.

Therefore, the performance gain is constrained by limited

biometric information in low resolution face images.

B. Performance on Real World Cases

Recently, Klontz and Jain [66] have investigated the op-

portunity for face recognition algorithms to facilitate law

enforcement agencies in identifying individuals from the crime

scene CCTV footage during the Boston bombings incident.

Inspired by their study, the performance of the proposed co-

transfer learning algorithm is also evaluated on some real

world examples pertaining to cross-resolution face matching.

In our experiments, some real world examples are collected

from different sources on the internet which includes two

individuals from Boston bombing [66], [67], four individuals

from London bombing [1] and one individual from Mumbai

terrorist attack [2]. Fig. 12 shows the low resolution probes and

corresponding gallery images considered in the experiment.

In this additional experiment for evaluating the performance

with these seven real world examples, we appended these

images to the SCface database for co-transfer learning. The

experiments are performed with gallery image resolution of

72× 72 pixels and query image resolution of 32× 32 pixels.

Each individual has one image in the gallery and one or

more low resolution images as probe. Further, an extended

gallery of 6534 individuals is created by using frontal images

acquired from a law enforcement agency and appending it

to the gallery of the SCface database. The performance of

the proposed co-transfer learning algorithm is also compared

with COTS for matching 15 probe images corresponding to

these 7 real world cases. The results in Table IX show that the

proposed algorithm consistently retrieves the correct match at

a lower rank than COTS7 on all the cases. The results validate

our initial assertion that the proposed co-transfer learning

algorithm can efficiently be coupled with surveillance systems

to assist law enforcement agencies.

7Since, the eye region is occluded in some of the probe images, COTS is
not able to process such cases (represented as NP - Not Processed).
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TABLE IX
RESULTS FOR MATCHING REAL WORLD EXAMPLES AGAINST A LARGE SCALE GALLERY OF 6534 INDIVIDUALS. VALUES IN THE TABLE REPRESENTS THE

RANK AT WHICH THE CORRECT IDENTITY IS RETRIEVED. NP REPRESENTS THE CASES WHICH ARE NOT PROCESSED BY THE COTS.

Algorithm
Probe Id

1a 1b 2a 2b 2c 3a 3b 4a 5a 5b 6a 6b 6c 7a 7b

CTL 7 29 8 17 1 15 5 19 17 1 1 10 18 2 4

COTS NP NP 11 26 3 28 9 22 NP 1 1 14 NP 4 NP

Fig. 12. Real world cases for cross-resolution face matching: (a) low
resolution probe images and (b) corresponding gallery images.

C. Performance on Point and Shoot Still Challenge Database

The performance of the proposed algorithm is also evaluated

on the still matching challenge of Point and Shoot Challenge

(PaSC) [25] database. The experiments are performed on

the frontal part of the still face database and the predefined

protocol of PaSC is followed except the resolution of images.

In PaSC, the size of both gallery and probe images is same;

however, the proposed algorithm requires the two to be of

different resolutions. Therefore, we have set the probe image

size to 24 × 24 whereas the gallery images are of original

size 72× 72. Under this environment, the proposed algorithm

yields the verification accuracy of ∼47% at 1% false accept

rate and the COTS yields a significantly lower accuracy of

∼33%. It is to be noted that these results cannot be compared

with the ones provided in [25] because the resolution of the

probe images is different from our experiments.

VII. CONCLUSION AND FUTURE WORK

The paper introduces a co-transfer learning framework

which seamlessly combines the co-training and transfer learn-

ing paradigms for efficient cross-resolution face matching.

During training, the proposed framework learns to match high

resolution face images in the source domain. This knowledge

is then transferred from the source domain to the target domain

to match low resolution probes with high resolution gallery.

The proposed framework builds ensembles from the weighted

combination of source and target domain classifiers on two

separate views. Two ensembles trained on separate views

transform the unlabeled probe instances into pseudo-labeled

instances using co-training. These pseudo-labeled instances

are utilized for updating the decision boundary of the target

domain classifier, thus, transferring knowledge from the source

domain to the target domain. Further, dynamically updating

the weights assigned to each classifier facilitates gradual

shift of knowledge from the source to target domain. The

amalgamation of transfer learning and co-training helps to

transfer knowledge from the source to target domain with

probe instances as and when they arrive. Comprehensive

analysis, including comparison with existing cross-resolution

face matching algorithms, super-resolution techniques, and a

commercial face recognition system, is performed for different

gallery-probe resolutions ranging from 216×216 to 16×16

pixels. The proposed co-transfer learning framework provides

significant improvement for cross-resolution face matching on

different surveillance quality face databases. As future research

directions, this research can be extended for addressing cross

resolution face recognition under face age and weight, dis-

guise, and plastic surgery variations. It can further be extended

for cross resolution face recognition in videos where several

of frames can be of very poor quality and resolution [68].
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