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Abstract Deep neural network (DNN) architecture based models have high
expressive power and learning capacity. However, they are essentially a black
box method since it is not easy to mathematically formulate the functions
that are learned within its many layers of representation. Realizing this, many
researchers have started to design methods to exploit the drawbacks of deep
learning based algorithms questioning their robustness and exposing their sin-
gularities. In this paper, we attempt to unravel three aspects related to the
robustness of DNNs for face recognition: (i) assessing the impact of deep archi-
tectures for face recognition in terms of vulnerabilities to attacks, (ii) detect-
ing the singularities by characterizing abnormal filter response behavior in the
hidden layers of deep networks; and (iii) making corrections to the processing
pipeline to alleviate the problem. Our experimental evaluation using multiple
open-source DNN-based face recognition networks, and three publicly avail-
able databases demonstrates that the performance of deep learning based face
recognition algorithms can suffer greatly in the presence of such distortions.
We also evaluate the proposed approaches on four existing quasi-imperceptible
distortions: DeepFool, Universal adversarial perturbations, l2, and Elastic-Net
(EAD). The proposed method is able to detect both types of attacks with
very high accuracy by suitably designing a classifier using the response of the
hidden layers in the network. Finally, we present effective countermeasures to
mitigate the impact of adversarial attacks and improve the overall robustness
of DNN-based face recognition.
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1 Introduction

With the convenience of obtaining large training data, availability of inex-
pensive computing power and memory, and utilization of cameras at multiple
places, deep learning paradigm has seen significant proliferation in face recog-
nition. Several algorithms such as DeepFace [97], DeepID [87], FaceNet [81],
and Liu et al. [46] are successful examples of application of deep learning to
face recognition. These deep CNN based architectures with many hidden lay-
ers and millions of parameters can obtain very high accuracies when tested
on databases such as the LFW database [39] and NIST’s face recognition test
[2]. While unprecedented improvements in the reported accuracy of machine
learning algorithms improve, it is also known that they are susceptible to ad-
versaries which can cause the classifier to yield incorrect results. Most of the
time these adversaries are unintentional and are in the form of outliers. How-
ever, such attacks may also be intentionally executed by specifically targeting
the blind spots of classifiers and have been explored in the literature in the
context of many applications of machine learning such as malware detection
[42].

Creating adversarial samples that can deceive/attack algorithms has be-
come easy lately with the application of the same deep learning techniques.
Recently, it has been shown that fooling adversarial images can be generated
in such a manner where humans can correctly classify the images but deep
learning algorithms misclassify them [32], [60]. Such images can be gener-
ated via evolutionary algorithms (e.g. Genetic Algorithm) [60] or adversarial
sample crafting using the fast gradient sign method [32]. Threat models by
creating perturbed eye-glasses are also explored to fool face recognition algo-
rithms [82]. Inspired by recent studies, it is our assertion that deep learning
based face recognition algorithms are also susceptible to adversarial attacks
and such attacks can be detrimental to recognition algorithms applied in real
world applications. In other words, if a deep learning based recognition engine
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Fig. 1: Illustrating how an image can be attacked with perceptible and quasi-
imperceptible adversarial perturbations to create false accepts (match between
different individuals) and false rejects (non-match between two images of the
same individual). Such errors compromise the reliability of automated face
recognition.
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is being used, an attacker can use synthetic deception approaches to either
deceive one’s own identity (in law enforcement applications) or impersonate
someone’s identity (in access control applications).

Even though adversarial attacks primarily pertain to deep network based
algorithms, there do exist other forms of attacks against face recognition sys-
tems. Ratha et al. [72] have identified multiple potential attack points for any
biometric system; e.g. presenting false biometrics to the sensor level and in-
jecting modified biometrics in between the acquisition and feature extraction
levels. Spoofing or presentation attacks at the sensor level are similar to adver-
sarial attacks where the goal is to make the face recognition system perform
a misclassification of the input. While extensive research has been conducted
on evaluating the vulnerabilities to spoofing attacks and associated counter-
measures [24], handling adversarial attacks is relatively less explored in the
literature.

The focus of this paper1 is to demonstrate that the performance of deep
learning based face recognition algorithms can be significantly affected due to
adversarial attacks. As shown in Fig. 1, we also postulate that it is not required
to attack the system with sophisticated learning based attacks; attacks such as
adding random noise or horizontal and vertical black grid lines in the face im-
age cause reduction in face verification accuracies. The first key step in taking
countermeasures against such adversarial attacks is to be able to reliably de-
termine which images contain such distortions. Once identified, the distorted
images may be rejected for further processing or rectified using appropriate
preprocessing techniques to prevent degradation in performance. Further, such
proposed solutions should be able to operate well in a cross-attack (tested on
attack types that are not included in the training data) and cross-database
(trained on a different database than the ones used in testing) protocol to be
applicable in a live environment where many new attacks and different im-
ages may be used with the network. In this paper, we propose a deep network
based approach to perform both detection and mitigation procedures. The key
contributions of this paper are:

– Design and evaluate image processing based adversarial attacks towards
off-the-shelf deep learning based face recognition algorithms.

– Propose and evaluate a methodology for automatic detection of such at-
tacks using the response from hidden layers of the DNN.

– Propose a novel technique of selective dropout in the DNN to mitigate the
effect of these adversarial attacks.

– The proposed algorithms have been evaluated using cross-database proto-
cols and have also been evaluated in cross-attack scenarios.

We believe that being able to not only automatically detect but also correct
adversarial samples at runtime is a crucial ability for a deep network that is
deployed for real world applications. With this research, we aim to present
a new perspective on potential attacks as well as a different methodology to

1 A shorter version of the manuscript was presented at AAAI2018.
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limit their performance impact beyond simply including adversarial samples
in the training data.

2 Related Work

The existing literature on attacks against face recognition and associated de-
fense strategies can be divided into four categories: face spoofing, and the
generation, detection, and mitigation of adversarial sample based attacks. We
briefly describe the existing work in each of these categories in the following
subsections. Table 1 lists some recent adversarial example generation, detec-
tion, and mitigation algorithms. Recently, Akhtar and Mian [9] have presented
the survey of adversarial generation, detection, and mitigation algorithms.

2.1 Face Spoofing

Attacks on face recognition systems have been studied in the past focusing on
presentation attacks on remote unsupervised face recognition. Among the first
attacks on face biometrics that have come into focus are spoofing or presen-
tation attacks. The presentation attack involves presenting a fake face to the
biometric sensor using a printed photograph, worn mask, or even an image
displayed on another electronic device. The presentation might not be just a
static face image, rather it could be previously captured or otherwise obtained
video of a face that can also be played back to the sensor using an electronic
device. Chingovska et al. [24] present a review of the vulnerabilities of a face
based system in the presence of these attacks as well as how multispectral
systems can mitigate some of the risk. However, Raghavendra et al. [69] and
Agarwal et al. [6] have prepared a database for multispectral spoofing and re-
ported that even such systems are not immune to presentation attacks. Recent
efforts in designing presentation attack detection methodologies include soft-
ware level solutions such as color texture analysis based detection [4], [17], [83]
and hardware level solutions such as light polarization analysis using a novel
hardware extension [78]. Biggio et al. [16] have presented a method based on
meta-level statistical analysis to assess the vulnerability of multi-biometric
systems against presentation attacks. Patel et al. [65] have proposed a detec-
tion methodology based on moire pattern analysis for mobile phones. Smith
et al. [84] propose a reflection watermark challenge-response based detection
methodology for consumer devices. Recently, Boulkenafet et al. [18] have pro-
posed a detection methodology using Fisher vector encoding and speeded-up
robust features (SURF) [13] for spoofing attack detection with limited train-
ing data for a generalizable methodology that works well on unseen databases.
For detecting silicone mask based face presentation attacks, Manjani et al. [52]
propose a dictionary learning based approach that shows state of art results on
spoofing databases. Deep learning based approaches for face spoofing detec-
tion have also been proposed recently that utilize CNNs in conjunction with
texture features and other types of deep networks [7,29,86].
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2.2 Adversarial Example Generation

With increasing usage of deep learning algorithms for complex and popular
tasks such as object recognition and face recognition, researchers are also at-
tempting to understand the limitations of deep learning algorithms. Szegedy et
al. [89] have investigated the properties of deep neural networks and concluded
that the input-output mappings that are learned by them can be fairly discon-
tinuous and can be exploited to create an adversarial perturbation. Goodfellow
et al. [32] have expanded on the research presented in [89] and further inves-
tigated adversarial attacks on a deep network. They explain the existence of
adversarial examples for a neural network based on the limited precision (0-
255 in case of image pixels) of input data combined with the implications of
a high-dimensional dot product. Sabour et al. [79] generate adversarial sam-
ples by minimizing the distance between the internal feature representations
of images belonging to different classes. Moosavi et al. [58] have presented a
methodology to create adversarial examples called DeepFool that works by
computing the minimal perturbation such that the distance between the cor-
rect decision hyperplane and a given data point is minimized, converging to
0. Papernot et al. [61] have demonstrated a practical scenario for using an
adversarial attack against a black-box DNN without any knowledge of the
network’s hyperparameters. Rozsa et al. [76] discuss adversarial attacks on a
deep CNN method that extracts soft biometric attributes from facial images
(such as gender). They demonstrate that certain attributes are inherently more
robust towards adversarial attacks than others. They also demonstrate that
naturally adversarial samples exist which can be correctly classified by adding
a perturbation in a kind of reverse adversarial attack. They construct an aux-
iliary substitute deep model by emulating the input-output mapping observed
by the target DNN and then craft adversarial examples based on the auxil-
iary model. Moosavi et al. [57] have extended their DeepFool perturbations by
aggregating the learned perturbations across an entire collection of images to
determine a ”universal” perturbation pattern that can be applied to any image
to fool the targeted network. Carlini and Wagner [20] have devised a set of
attacks specifically targeted at rendering defensive distillation ineffective using
lp distance metric optimization to make them quasi-imperceptible. Rauber et
al. [73] have crafted blackbox attacks using domain-agnostic image transfor-
mations that can modify the texture of the image to attack deep networks.
Rosza et al. [75] have drafted a strategy to generate adversarial samples by
targeting the perturbations such that the layer-wise features of the adversarial
image closely resemble the features of a sample from a different class. They
showcase that biometric systems using deep features along with some distance
metric are more vulnerable to such attacks as compared to end-to-end net-
works that directly predict the output label. Athalye et al. [12] have presented
the algorithm to generate the physical adversarial examples using Expectation
Over Transformation (EOT).
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Table 1: Literature review of adversarial attack generation, detection, and
mitigation algorithms.

Adversary Authors Description

Generation

Szegedy et al. [89] L-BFGS: L(x+ ρ, l) + λ||ρ||2 s.t. xi + ρi ∈ [bmin, bmax]
Goodfellow et al. [32] FGSM: x0 + ε ∗ (OxL(x0, l0)
Kurakin et al. [41] I-FGSM: xk+1 = xk + ε ∗ (OxL(x0, l0)
Papernot et al. [62] Saliency Map: l0 distance optmization
Moosavi-Dezfooli et al. [58] DeepFool: for each class, l 6= l0,minimize d(l, l0)
Rozsa et al. [76] Adversarial attacks on biometric attribute predicting deep CNNs
Carlini and Wagner [20] C & W: lp distance metric optimization
Moosavi-Dezfooli et al. [57] Universal: Distribution based perturbation
Rauber et al. [73] Blackbox: Uniform, Gaussian, Salt and Pepper, Gaussian Blur, Contrast
Rozsa et al. [75] LOTS: Layerwise Target-Origin Synthesis method to attack deep feature based systems
Rozsa et al. [76,77] Fast flipping attribute based on inverting classifier score
Chhabra et al. [23] Facial attribute anonymization using adversarial noise
Kurakin et al. [90] R+FGSM x′ + (ε− α) ∗ sign(O′

xJ(x′, ytrue)
Addad et al. [3] Clipping free Centered Initial Attack
Alaifari et al. [10] Gradient descent based deformation
Athalye et al. [12] Expectation Over Transformation

Detection

Grosse et al. [35] Statistical test for attack and genuine data distribution
Gong et al. [31] and Metzen
et al. [54]

Neural network based classification

Feinman et al. [28] Randomized network using Dropout at both training and testing
Liang et al. [45] Quantization and smoothing based image processing
Lu et al. [49] Quantize ReLU output for discrete code + RBF SVM
Meng and Chen [53] Learned manifold based classification of adversarial and clean images
Li and Li [44] Convolutional filter statistics with cascaded classifier
Tramèr et al. [91] Ensemble training
Akhtar et al. [8] Perturbation Rectifying Network
Goswami et al. [33] Filter responses of CNN
Agarwal et al. [5] Image Pixels + PCA + SVM

Mitigation

Miyato et al. [55] Virtual adversarial training
Dziugaite et al. [27] JPEG compression based mitigation for FGSM attacks
Das et al. [26] JPEG compression to reduce the effect of adversary
Bhagoji et al. [15] Compressing the data using PCA before testing
Luo et al. [50] Applying the network to different regions of the image
Xie et al. [95] Random resizing and random padding of the input images
Gu and Rigazio [36] Deep Contractive Networks with smoothness penalty
Ross and Doshi-Velez [74] Gradient regularization based on relative change in output and input
Papernot et al. [63] Using class probability vectors from trained network to re-train the original model
Nayebi and Ganguli [59] Using highly non-linear activation functions
Cisse et al. [25] Layer-wise regularization by maintaining a small global Lipschitz constant
Akhtar et al. [8] Add a pre-input perturbation rectification network to the target network
Lee et al. [43] Generative adversarial network framework to perform adversarial training
Ye et al. [98] Model compression using pruning + LOGITS Augmentation
Ranjan et al. [71] Bounding the feature maps close to each other by power convolution
Kurakin et al. [41] Naive adversarial training
Rakin et al. [70] Quantization of activation function
Prakash et al. [67] Pixel deflections + wavelet denoising
Goswami et al. [33] Dropout of filter responses
Tramèr [90] R+FGSM adversarial training
Guo et al. [37] Input transformations
Xie et al. [94] Input randomization
Song et al. [85] Purifies images using PixelCNN
Samangouei et al. [80] Generative Adversarial Networks based defense

2.3 Adversarial Example Detection

As new methods of creating adversarial examples have been proposed, research
has also been conducted in utilizing adversarial examples for training more ro-
bust networks to counter adversarial attack as well as improve the overall
quality of learned representations. Grosse et al. [35] have proposed a method
to statistically model the distribution of attacked images and genuine images
and then checking the fit of each image to classify it into either category. Meng
et al. [53] have proposed a similar approach but with manifold learning instead
for the clean and adversarial images. Feinman et al. [28] have proposed using
the uncertainty estimates of dropout networks as features to train separate
binary classifiers for detecting attacks. Liang et al. [45] have suggested using
smoothing and quantization based image processing techniques to detect the
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perturbations added to images. Lu et al. [49] have proposed a SafetyNet frame-
work using the difference in the pattern of the output of ReLU activations as
features to a RBF kernel SVM classifier to detect adversarial examples. Li
et al. [44] have proposed a similar algorithm using the convolutional filter
statistics as features instead of ReLU activations and a cascaded classifier in-
stead of the RBF kernel SVM. Xu et al. [96] have proposed another detection
methodology based on the difference in features extracted using a full resolu-
tion image with that of a lower fidelity version (obtained by reducing color bit
depth or spatial smoothing). While this approach is simple and effective for
high resolution images which contain a lot of detail, it may not be effective for
low resolution cropped faces which are often used in face recognition scenar-
ios. Recently, Agarwal et al. [5] have shown high detection accuracy of image
agnostic perturbation using image pixels and dimensionality reduction using
PCA with SVM classifier.

2.4 Adversarial Example Mitigation

As the existence of adversarial examples has gained attention in the literature,
researchers have also proposed a few techniques to handle adversarial attacks
and mitigate their effect on the performance of a targeted deep network. Rad-
ford et al. [68] have utilized adversarial pair learning to compute unsupervised
representations using convolutional neural networks where the generator model
produces images with the intent to try and fool the discriminator model. They
demonstrate that both the models learn useful feature representations by using
them for object and face recognition. This model of learning called Generative
Adversarial Network (GAN) has since become quite popular. Recently, GANs
have been used in domain adaptation [19] and cross-domain image generation
tasks using weight-sharing coupling [48]. GANs have now also been used as
part of defenses against adversarial attacks [43,80]. Song et al. [85] have pro-
posed PixelCNN based generative model to purify the adversarial examples.
Papernot et al. [63] have proposed a defense mechanism towards adversarial
attacks. The authors propose that distillation [38] can be performed to create a
network that is resilient towards adversarial attacks and utilize perturbations
targeting sensitive gradients. They report favorable results using this method-
ology on the MNIST and CIFAR-10 databases, improving results against the
crafted adversarial data. Although distillation seems to greatly improve results
when the adversarial attacks are based on such perturbations, we focus on the
impact of adversarial examples that employ a different approach and do not
depend on network gradient information. Bhagoji et al. [15] have proposed
that using PCA based dimensionality reduction can reduce the effect of adver-
sarial examples on network performance. With a similar idea, Das et al. [26]
have proposed using JPEG compression to pre-process the image before ap-
plying the deep network. Xie et al. [95] have proposed using randomly resizing
and padding the input images before processing them which can reduce the
effectiveness of adversarial attacks. Ross and Doshi-Velez [74] have proposed
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modifying the loss function of the network such that small changes in the in-
put causing large changes in the output is penalized to improve the stability of
the predictions made by the network in the presence of adversarial examples
that have been created with a constrained lp norm. Nayebi and Ganguli [59]
have proposed using highly non-linear activation functions that are biologi-
cally inspired to reduce the linearity of the network and counter adversarial
examples. Akhtar et al. [8] have proposed adding a pre-input layer rectifi-
cation network to the target network which is trained to reconstruct clean
images from their adversarial counterparts so that the image can be cleaned
before extracting features. Recently, Goel et al. [30] have prepared the Smart-
Box toolbox containing several existing adversarial generation, detection, and
mitigation algorithms.

3 Adversarial Attacks on Deep Learning based Face Recognition

In this section, we discuss the adversarial distortions that are able to degrade
the performance of deep face recognition algorithms. We use both impercepti-
ble and perceptible perturbation. The perceptible perturbations are modeled
on commonly observed face domain distortions. For example, an old passport
might contain a laminated face image with a different type of distortion com-
pared to someone growing a beard. Let I be the face image input to a deep
learning based face recognition algorithm and l be the output class label (in
case of identification, it is an identity label and for verification, it is match
or non-match). Let a(·) be an adversarial attack operator which perturbs the
input image I such that a network D yields an incorrect class label l′. In other
words, D(I) = l and D(a(I)) = l′ and l 6= l′. In this research, we also eval-
uate the robustness of deep learning based face recognition in the presence
of image processing based distortions. Based on the information required in
their design, these distortions can be considered at image-level or face-level.
We propose two image-level distortions: (a) grid based occlusion, and (b) most
significant bit based noise, three face-level distortions: (a) forehead and brow
occlusion, (b) eye region occlusion, and (c) beard-like occlusion. Further, the
imperceptible perturbations are based on state-of-the approaches including
DeepFool [58], Universal Adversarial Perturbations [57], l2 attack [20], and
EAD [22]. We have also performed the adversarial detection and mitigation
experiments on these adversarial perturbations.

3.1 Image-level Distortions

Distortions that are not specific to faces and can be applied to an image of
any object are categorized as image-level distortions. In this research, we have
utilized two such distortions, grid based occlusion and most significant bit
change based noise addition. Fig. 2(b) and 2(c) present sample outputs of
image-level distortions.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 2: Sample images representing the (b) grid based occlusion (Grids), (c)
most significant bit based noise (xMSB), (d) forehead and brow occlusion
(FHBO), (e) eye region occlusion (ERO), (f) beard-like occlusion (Beard), (g)
DeepFool [58], (h) Universal [57], (i) L2 [20], and (j) Elastic-Net (EAD) [22]
distortions when applied to the (a) original images.

3.1.1 Grid based occlusion

For the grid based occlusion (termed as Grids) distortion, we stochastically
select a number of points P = {p1, p2, ..., pn} along the upper (y = 0) and
left (x = 0) boundaries of the image according to a parameter ρgrids. The
parameter ρgrids determines the number of grids that are used to distort each
image with higher values resulting in a denser grid, i.e., more grid lines. For
each point pi = (xi, yi), we select a point on the opposite boundary of the
image, p′i = (x′i, y

′
i), with the condition if yi = 0, then y′i = H and if xi = 0

then x′i = W , where, W ×H is the size of the input image. Once a set of pairs
corresponding to points P and P ′ have been selected for the image, one pixel
wide line segments are created to connect each pair, and each pixel lying on
these lines is set to 0 grayscale value. In this paper, the parameter ρgrids is
set to 0.4 which results in a minimum of 4 and maximum of 10 grid lines (of
1 pixel thickness each) on each perturbed image.

3.1.2 Most significant bit based noise

For the most significant bit based noise (xMSB) distortion, we select three sets
of pixels X1,X2,X3 from the image stochastically such that |Xi| = φi×W ×H,
where W × H is the size of the input image. The parameter φi denotes the
fraction of pixels where the ith most significant bit is flipped. The higher the
value of φi, the more pixels are distorted in the ith most significant bit. For
each Pj ∈ Xi,∀i ∈ [1, 3], we perform the following operation:

Pkj = Pkj ⊕ 1 (1)
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where, Pkj denotes the kth most significant bit of the jth pixel in the set
and ⊕ denotes the bitwise XOR operation. It is to be noted that the sets Xi
are not mutually exclusive and may overlap. Therefore, the total number of
pixels affected by the noise is at most |X1 + X2 + X3| but may also be lower
depending on the stochastic selection. In this research, results are reported
with φ = [0.03,0.05,0.1].

3.2 Face-level Distortions

Face-level distortions specifically require face-specific information, e.g. location
of facial landmarks. The three face-level region based occlusion distortions are
applied after performing automatic face and facial landmark detection. In this
research, we have utilized the open source DLIB library [40] to obtain the facial
landmarks. Once facial landmarks are identified, they are used along with their
boundaries for masking. To occlude the eye region, a singular occlusion band
is drawn on the face image as follows:

I{x, y} = 0,∀x ∈ [0,W ], y ∈
[
ye −

deye
ψ

, ye +
deye
ψ

]
(2)

Here, ye =
(
yle+yre

2

)
, and (xle, yle) and (xre, yre) are the locations of the left

eye center and the right eye center, respectively. The inter-eye distance deye is
calculated as: xre−xle and ψ is a parameter that determines the width of the
occlusion band. Similar to the eye region occlusion (ERO), the forehead and
brow occlusion (FHBO) is created where facial landmarks on forehead and
brow regions are used to create a mask. For the beard-like occlusion, outer
facial landmarks along with nose and mouth coordinates are utilized to create
the mask as combinations of individually occluded regions. Fig. 2 (d), (e), and
(f) illustrate the samples of face-level distortions.

3.3 Learning based Adversaries

Along with the proposed image-level and face-level distortions, we also ana-
lyze the effect of adversarial samples generated using four existing adversarial
models: DeepFool [58], Universal Adversarial Perturbations [57], l2 attack [20],
and EAD [22]. DeepFool [58] calculates a minimal norm adversarial perturba-
tion for a given image in an iterative manner. It initializes with the original
image that lies in the feature space in a region within the decision boundaries
of the classifier for the correct class. In each subsequent iteration, the algo-
rithm perturbs the current image by a small vector that is designed to shift
the resulting image further towards the boundary. The perturbations added
to the image in each iteration are accumulated to compute the final pertur-
bation once the perturbed image changes its label according to the original
decision boundaries of the network. The Universal adversarial perturbations
[57] are ‘universal’ in the sense that they are designed to be able to utilize any
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image to fool a network with a high probability. These perturbations are also
visually imperceptible to a large extent. These are learned by using a set of
clean images and iteratively shifting all of them towards the decision bound-
ary while limiting the l2 norm and l∞ norm of the perturbation to a fraction
of the respective norms of the original image. The universal perturbation is
computed by gradually accumulating the perturbations for each image in the
training data while maintaining the constraint on the perturbation norm. The
l2 attack proposed by Carlini et al. [20] operates with a similar formulation
where they attempt to apply a box constraint to the adversarial image using
the l2 distance while ensuring maximum deviation from the correct class dur-
ing prediction. However, they consider the integrality constraint function as
well as use multiple gradient descent in the optimization routine. The EAD
attack [22] follows the same philosophy as the l2 attack but instead of focusing
on the l2-norm to apply the box constraint it instead utilizes the l1 metric to
perform an elastic-net regularization to optimize the adversarial generation
routine. For these learning based attacks, we have followed the training pro-
cess defined in the respective papers, along with default parameters including
strength parameter. In our experiments, no knowledge of attacked databases
is used in training of the models i.e., distortions specific to a deep learning
modal are computed on ImageNet database and then applied for face images.

The inherent difference between these learning based adversaries and the
proposed attacks is that the perturbation caused by the learning based adver-
saries is smaller (visually imperceptible) and therefore harder to detect. On
the other hand, the proposed image processing operations based distortions
are completely network-agnostic and instead rely on domain knowledge by
targeting face-specific features. By evaluating the proposed approaches on all
the learning based quasi-imperceptible adversaries and the proposed perturba-
tions, we are able to assess its performance in a variety of possible real world
scenarios.

4 Impact of Adversarial Perturbations on existing DNNs

In this section, we first provide a brief overview of the deep face recognition
networks, databases, and respective experimental protocols that are used to
conduct the face verification evaluations. We attempt to assess how the deep
networks perform in the presence of different kinds of proposed distortions to
emphasize the need for addressing such attacks.

4.1 Existing Networks and Systems

In this research, we utilize OpenFace [11], VGG-Face [64], LightCNN [93], and
L-CSSE [51] networks to measure the performance of deep face recognition
algorithms in the presence of the aforementioned distortions. The OpenFace
library is an implementation of FaceNet [81] and is openly available to all mem-
bers of the research community for modification and experimental usage. The
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VGG deep face network is a deep convolutional neural network (CNN) with 11
convolutional blocks where each convolution layer is followed by non-linearities
such as ReLU and max pooling. The network has been trained on a dataset of
2.6 million face images pertaining to 2,622 subjects [64]. LightCNN is another
publicly available deep network architecture for face recognition that is a CNN
with maxout activations in each convolutional layer and achieves good results
with just five convolutional layers. LightCNN has been trained on a combined
database with 99,891 individuals. L-CSSE is a supervised autoencoder for-
mulation that utilizes a class sparsity based supervision penalty in the loss
function to improve the classification capabilities of autoencoder based deep
networks. These deep learning approaches are used to extract features and as
described in the original papers, normalization and recommended matching
measures are used. In order to assess the relative performance of deep face
recognition with a non-deep learning based approach, we compare the perfor-
mance of these deep learning based algorithms with a commercial-off-the-shelf
(COTS) matcher. The details of the COTS matching algorithm are unavailable
but it is known that it is not deep learning based. No fine-tuning is performed
for any of these algorithms before evaluating their performance on the test
databases.

4.2 Databases

We use three publicly available face databases, namely, the Point and Shoot
Challenge (PaSC) database [14], the Multiple Encounters Dataset (MEDS)
[1], and the Multiple Biometric Grand Challenge (MBGC) database [66]. The
PaSC database [14] contains still-to-still and video-to-video matching proto-
cols. We use the frontal subset of the still-to-still protocol which contains 4,688
images pertaining to 293 individuals which are divided into equally sized tar-
get and query sets. Each image in the target set is matched to each image in
the query set and the resulting 2344× 2344 score matrix is used to determine
the verification performance.

The MEDS-II database [1] contains a total of 1,309 faces pertaining to
518 individuals. Similar to the case of PaSC, we utilize the metadata provided
with the MEDS release 2 database to obtain a subset of 858 frontal face images
from the database. Each of these images is matched to every other image and
the resulting 858 × 858 score matrix is utilized to evaluate the verification
performance.

The still portion of the MBGC database [66] contains a total of 34,729
faces pertaining to 570 individuals. These images are split into 10,687 faces in
the query set and 24,042 faces in the target set. There are two versions for the
target and query sets, where one version has an inter-eye distance of 90 pixels
and is compressed to a 8 KB JPEG image, and the other has an inter-eye
distance of 120 pixels and is compressed to a 20 KB JPEG image. We refer to
the first set as MBGC (8 KB) or MBGC (8) and the other as MBGC (20 KB)



Detecting and Mitigating Adversarial Perturbations for Robust Face Recognition 13

or MBGC (20) while reporting the results. The 10687× 24042 score matrix is
used to determine the verification performance for both of these sets.

For evaluating performance under the effect of distortions, we randomly
select 50% of the total images from each database and corrupt them with the
proposed distortions separately. These distorted sets of images are utilized to
compute the new score matrices for each case.

4.3 Results and Analysis

Effect of adversarial distortions on OpenFace, VGG-Face, LightCNN, L-CSSE,
and COTS are summarized in Table 2. Fig. 3 and Fig. 4 present the Receiver
Operating Characteristics (ROC) curves on the PaSC and MEDS databases
respectively with OpenFace, VGG-Face, and COTS. On the PaSC database,
as shown in Fig. 3, while OpenFace and COTS perform comparably to each
other at about 1% false accept rate (FAR), OpenFace performs better than
the COTS algorithm at all further operating points when no distortions are
present. However, we observe a sharp drop in OpenFace performance when
any distortion is introduced in the data. For instance, with grids attack, at 1%
FAR, the GAR drops from 39.4% to 10.1% which is a loss of 29.3% (Open-
Face) and 31.2% to 3.2% which is a loss of 28.0% (VGG). On the other hand,
the COTS performance only drops to 24.3% from 40.3% which is only about
half the drop compared to what OpenFace and VGG experience. We notice a
similar scenario in the presence of noise attack (xMSB) where OpenFace per-
formance drops down to 10.1% which is a loss of 29.2% (29.9% in the case of
VGG) as opposed to loss of 21.2% observed by COTS. In cases of LightCNN
and L-CSSE, they both have shown higher performance with original images;
however, as shown in Table 2, similar level of drops are observed. It is to be
noted that for xMSB and grid attack, L-CSSE is able to achieve relatively
better performance because L-CSSE is a supervised version of autoencoder
which can handle noise better. We also observe that changing least significant
bit (LSB) does not impact the performance of deep learning algorithms. In
our experiments, we observe that single bit based perturbation has minimal
impact and three most significant bit based perturbation yields the maximum
impact. We observe similar results for the MBGC database with performance
reducing substantially in the presence of adversarial attacks. Fig. 5 shows the
sample ROC of VGG based face recognition on MBGC database. Overall, deep
learning based algorithms experience higher performance drop as opposed to
the non-deep learning based COTS. In the case of occlusions, however, deep
learning based algorithms suffer less as compared to COTS. It is our assess-
ment that the COTS algorithm fails to perform accurate recognition with the
highly limited facial region available in the low-resolution PaSC images in the
presence of occlusions.

All deep learning based algorithms outperform the COTS matcher on the
MEDS database with a genuine accept rate (GAR) of 60-89% at 1% false
accept rate (FAR) respectively as opposed to 24.1% by COTS. However, we
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Fig. 3: Verification performance of OpenFace, VGG, and COTS under the
effect of the adversarial distortions on the PaSC database.
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Fig. 4: Verification performance of OpenFace, VGG, and COTS under the
effect of the adversarial distortions on the MEDS database.
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Table 2: Verification performance of existing face recognition algorithms in
the presence of different distortions on the PaSC database. All values indicate
genuine accept rate (%) at 1% false accept rate.

Database System Original Grids xMSB FHBO ERO Beard

MEDS

COTS 24.1 20.9 14.5 19.0 0.0 24.8
OpenFace 66.7 49.5 43.8 47.9 16.4 48.2
VGG-Face 60.1 50.3 45.0 25.7 10.9 47.7
LightCNN 89.3 80.1 71.5 62.8 26.7 70.7
L-CSSE 89.1 81.9 83.4 55.8 27.3 70.5

PaSC

COTS 40.3 24.3 19.1 13.0 0.0 6.2
OpenFace 39.4 10.1 10.1 14.9 6.5 22.6
VGG-Face 31.2 3.2 1.3 15.2 8.8 24.0
LightCNN 60.1 24.6 29.5 31.9 24.4 38.1
L-CSSE 61.2 43.1 36.9 29.4 39.1 39.8

Fig. 5: Verification performance of VGG on the MBGC (20 KB) database
under the effect of adversarial distortions.

observe that when the data is corrupted by the grids distortion, the perfor-
mance of VGG and OpenFace drops by 9.83% to 50.28% and 17.1% to 49.5%
respectively. In comparison, the performance of COTS drops to 21% which
is only about a 3% drop. Similarly, we note that when the xMSB attack is
applied, VGG and OpenFace performance drops to 45% and 43.8% showing a
loss of 15% and 22.9% as opposed to 9.6% in the case of the COTS. In case of
L-CSSE, noise level attacks have less impact compared to other deep learning
models. As for the facial region occlusions, all the deep learning algorithms
show similar trends when it comes to degradation in performance. VGG suf-
fers a drop of 34.4% for FHBO and 12.4% for beard. OpenFace performance
also degrades by 18.7% for FHBO and 18.5% for beard. COTS performance
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Fig. 6: Bar chart showing the effect of quasi-imperceptible adversarial per-
turbations on the MEDS and PaSC databases when the VGG face model is
used.

Fig. 7: Demonstrating the effect of image resolution on the impact of adversar-
ial perturbations on the MEDS database when using the VGG face network.
The relative adversarial GAR is reported at 0.01 FAR.

drops by 5% for FHBO and notices an increase of 0.7% for the beard like
occlusion. In the case of eye region occlusion, the COTS matcher suffers the
most as in the case of the PaSC database, but high performance losses are
also observed for both the deep learning algorithms: 50.3% for OpenFace and
49.2% for the VGG network. Similar trends are observed with Light-CNN and
L-CSSE. Learning based distortions such as DeepFool and universal adversar-
ial perturbations also have a similar effect on the performance of the VGG
network as presented in Fig. 6. We notice that the performance drops signifi-
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cantly in the presence of distortions on the PaSC database but less so for the
relatively higher quality MEDS database. This indicates that probably the
effectiveness of such distortions depends on the resolution and inherent qual-
ity of the targeted images. In order to explore this further, we examine the
effect of resolution where we progressively downscale the images from MEDS
database by a scaling factor before applying the adversarial perturbations. We
compare the relative adversarial GAR at 1% FAR in each case where we define
the relative adversarial GAR as: GARadv

GARorig
. The results of this experiment are

presented in Fig. 7. We observe that there is a consistent increase in the impact
of adversarial distortions as the image resolution is reduced. Further, increas-
ing the intensity of the perturbations by manipulating the parameter values
may further deteriorate performance but the distortions will also become more
visually noticeable.

5 Detection of Adversarial Attacks

As observed in the previous section, adversarial attacks can substantially re-
duce the performance of usually accurate deep neural network based face recog-
nition methods. Therefore, it is essential to address such singularities in order
to make face recognition algorithms more robust and useful in real world ap-
plications. In this section, we propose novel methodologies for detecting and
mitigating adversarial attacks. First, we provide a brief overview of a deep
network followed by the proposed algorithms and their corresponding results.

Each layer in a deep neural network essentially learns a function or repre-
sentation of the input data. The final feature computed by a deep network is
derived from all of the intermediate representations in the hidden layers. In an
ideal scenario, the internal representation at any given layer for an input image
should not change drastically with minor changes to the input image. How-
ever, that is not the case in practice as proven by the existence of adversarial
examples. The final features obtained for a distorted and undistorted image
are measurably different from one another since these features map to different
classes. Therefore, it is implied that the intermediate representations also vary
for such cases. It is our assertion that the internal representations computed
at each layer are different for distorted images as compared to undistorted
images. Therefore, in order to detect whether an incoming image is perturbed
in an adversarial manner, we decide that it is distorted if its layer-wise internal
representations deviate substantially from the corresponding mean represen-
tations.

5.1 Network Analysis and Detection

In order to develop adversarial attack detection mechanism, we first analyze
the filter responses in CNN architecture. Visualizations in Fig. 8 and Fig. 9
showcase the filter responses for a distorted image at selected intermediate
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(a) Conv3 2 (b) Zoomed

(c) Pool3 (d) Zoomed

(e) Conv3 2 (f) Zoomed

(g) Pool3 (h) Zoomed

Fig. 8: Visualizing filter responses for selected layers from the VGG network
when the input image is unaltered and affected by the grids distortion. The
first two rows present visualizations for conv3 2 and pool3 layers for the origi-
nal input images respectively. The next two rows present visualizations for the
same layers when the input images are distorted using adversarial perturba-
tions.
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(a) Conv3 2 (b) Zoomed

(c) Pool3 (d) Zoomed

(e) Conv3 2 (f) Zoomed

(g) Pool3 (h) Zoomed

Fig. 9: Visualizing filter responses for selected layers from the VGG network
when the input image is unaltered and affected by the beard distortion. The
first two rows present visualizations for conv3 2 and pool3 layers for the origi-
nal input images respectively. The next two rows present visualizations for the
same layers when the input images are distorted using adversarial perturba-
tions.
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Fig. 10: (a) Training and (b) Testing view of the proposed detection frame-
work. During training, the original input refers to the “mean” of the input
data.

layers that demonstrate the most sensitivity towards noisy data. The propa-
gation of the adversarial signal into the intermediate layer representations is
the inspiration for our proposed detection and mitigation methodologies. We
can see that many of the filter outputs primarily encode the noise instead of
the input signal. We observe that the deep network based representation is
more sensitive to the input and while that sensitivity results in a more ex-
pressive representation that offers higher performance in case of undistorted
data, it also compromises the robustness towards noise such as the proposed
distortions. Since each layer in a deep network learns increasingly more com-
plicated functions of the input data based on the functions learned by the
previous layer, any noise in the input data is also encoded in the features thus
leading to a higher reduction in the discriminative capacity of the final learned
representation. Similar conclusions can also be drawn from the results of other
existing adversarial attacks on deep networks, where the addition of a noise
pattern leads to spurious classification [32].

To counteract the impact of such attacks and ensure practical applicabil-
ity of deep face recognition, the networks must either be made more robust
towards noise at a layer level during training or it must be ensured that any
input is preprocessed to filter out any such distortion prior to computing its
deep representation for recognition.

In order to detect distortions we compare the pattern of the intermediate
representations for undistorted images with distorted images at each layer. The
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differences in these patterns are used to train a classifier that can categorize
an unseen input as an undistorted/distorted image. The overall flow of the
detection2 and mitigation algorithms is summarized in Fig. 10 and Fig. 11,
respectively. In this research, we use the VGG [64] and LightCNN [93] networks
to devise and evaluate our detection methodology. From the 50,248 frontal face
images in the CMU Multi-PIE database [34], 40,000 are randomly selected and
used to compute a set of layer-wise mean representations, µ, as follows:

µi =
1

Ntrain
ΣNtrain
j=1 φi (Ij) (3)

where, Ij is the jth image in the training set, Ntrain is the total number of
training images, µi is the mean representation for the ith layer of the network,
and φi(Ij) denotes the representation obtained at the ith layer of the network
when Ij is the input. Once µ is computed, the intermediate representations
computed for an arbitrary image I can be compared with the layer-wise means
as follows:

Ψi(I, µ) = Σλi
z

|φi(I)z − µiz|
|φi(I)z|+ |µiz|

(4)

where, Ψi(I, µ) denotes the Canberra distance between φi(I) and µi, λi de-
notes the length of the feature representation computed at the ith layer of the
network, and µiz denotes the zth element of µi. If the number of intermediate
layers in the network is Nlayers, we obtain Nlayers distances for each image I.
These distances are used as features to train a Support Vector Machine (SVM)
[88] for two-class classification.

6 Mitigation of Adversarial Attacks

It is essential to take a corrective action after an adversarial attack is detected
on the system. The simplest action can be to “reject” the input without any
further processing and thus preventing a bad decision. In this section, we
describe our mitigation approach. An ideal automated solution should not
only automatically detect but also mitigate the effect of an adversarial attack
so as to maintain as high performance as possible. Therefore, the next step in
defending against adversarial attack is mitigation. Often a simple technique
can be discarding or preprocessing (e.g. denoising) the affected regions. Our
motivation comes from the same thought that there must be some excitations
in the intermediate layers with highly anomalous behavior causing the final

2 The algorithms proposed by Metzen et al. [54] and Lu et al. [49] have also used network
responses for detecting adversarial attacks. As mentioned in Section 2, for real and adversar-
ial examples, SafetyNet [49] hypothesize that the ReLU activation at the final stage of CNN
follows different distributions. Based on this assumption they have discretized the ReLU
maps and append an RBF SVM in the target model for adversarial examples detection. On
the other hand, Metzen et al. [54] have trained the neural network on the features of internal
layers of CNN.
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Fig. 11: (a) Training and (b) Testing view of the proposed mitigation frame-
work.

output to go out of control. If we can detect those rogue filters and layers and
suppress them, we may succeed in mitigating the attack.

6.1 Mitigation: Selective Dropout

In order to accomplish these objectives, we again utilize the characteristics
of the output produced in the intermediate layers of the network. We select
10,000 images from the Multi-PIE database that are partitioned into 5 mu-
tually exclusive and exhaustive subsets of 2,000 images each. Each subset is
processed using a different distortion. The set of 10,000 distorted images thus
obtained contains 2,000 images pertaining to each of the five proposed distor-
tions. Using this data, we compute a filter-wise score per layer that estimates
the particular filter’s sensitivity towards distortion as follows:

εij = ΣNdis

k=1 ‖φij(Ik)− φij(I
′

k)‖ (5)

where, Ndis is the number of distorted images in the training set, εij denotes
the score and φij(·) denotes the response of the jth filter in the ith layer, Ik
is the kth distorted image in the dataset, and I

′

k is the undistorted version of
Ik. Once these values are computed, the top η layers are selected based on the
aggregated ε values for each layer. These are the layers identified to contain
the most filters that are adversely affected by the distortions in data. For each
of the selected η layers, the top κ fraction of affected filters are disabled by
modifying the weights pertaining to 0 before computing the features. We also
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apply a median filter of size 5×5 for denoising the image before extracting the
features. We term this approach as selective dropout. It is aimed at increasing
the network’s robustness towards noisy data by removing the most problematic
filters from the pipeline. We determine the values of parameters η and κ via
grid search optimization on the training data with verification performance as
the criterion.

6.2 Experimental Details

For training the detection model, we use the remaining 10,000 frontal face
images from the CMU Multi-PIE database as undistorted samples. We gen-
erate 10,000 distorted samples using all five proposed distortions with 2,000
images per distortion that are also randomly selected from the CMU Multi-
PIE database. Since the VGG network has 20 intermediate layers, we obtain
a feature vector of size 20 distances for each image. We perform a grid search
based parameter optimization using the 20, 000 × 20 training matrix to opti-
mize and learn the VGG SVM model. For LightCNN network, we obtain a
feature vector of size 13 since it has fewer intermediate layers. Therefore, for
the LightCNN SVM model, the training matrix is of size 20, 000× 13 and grid
search based approach is used to train the SVM. Once the model is learned,
any given test image is characterized by the distance vector and processed
by the SVM. The score given by the model for the image to belong to the
distorted class is used as a distance metric. We observe that the metric thus
obtained is able to classify distorted images on unseen databases. The mit-
igation algorithm is evaluated with both LightCNN and VGG networks on
the PaSC, MEDS, and MBGC databases with the same experimental protocol
as used in obtaining the verification results in Section 4. It should be noted
that all of the experiments presented in the subsequent subsections are per-
formed according to a cross-database protocol, i.e., training is performed only
using the Multi-PIE database (original and distorted images) and testing is
performed on the MEDS, PaSC, and MBGC databases.

6.3 Results and Analysis of Perturbation Detection

First, we present the results of the proposed algorithm in detecting whether an
image contains adversarial distortions or not using the VGG and LightCNN
networks. Fig. 12 and Table 3 present the results of adversarial attack de-
tection. In all the related tables and figures, the detection performance is
reported in the form of detection accuracy which is the combined accuracy of
correctly classifying both unperturbed and perturbed images. We choose these
as the model definition and weights are publicly available. We also compare
the performance of the proposed algorithm with three existing quality mea-
sures: Blind Image Quality Index (BIQI) [56], Spatial-Spectral Entropy-based
Quality (SSEQ) [47], and a face-specific quality measure [21]. Each distortion
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Table 3: Performance of the proposed detection methodology (using
LightCNN and VGG as the target networks) on MEDS and PaSC database.
Grids = grid based occlusion, xMSB = most significant bit based noise, FHBO
= forehead and brow occlusion, ERO = eye region occlusion, and Beard =
beard like occlusion.

Database Distortion Face Quality BIQI SSEQ Adaptive Noise [45] Bayesian Uncertainty [28] LightCNN VGG

MEDS

Beard 60.0 64.0 43.2 81.2 80.9 92.2 86.8
ERO 61.8 64.3 38.1 80.4 80.0 91.9 86.0

FHBO 56.7 63.2 43.9 79.8 79.6 92.9 84.4
Grids 60.7 63.7 44.4 62.1 62.4 68.4 84.4
xMSB 54.3 66.6 40.9 80.2 80.9 92.9 85.4

PaSC

Beard 56.2 47.4 49.9 83.4 85.1 89.5 99.8
ERO 56.2 48.7 51.2 84.9 84.6 90.6 99.7

FHBO 53.5 52.5 51.4 78.3 77.8 81.7 99.8
Grids 55.8 51.1 39.0 85.1 85.7 89.7 99.9
xMSB 55.0 61.0 16.1 88.2 87.9 93.2 99.8
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Fig. 12: ROCs for the proposed detection algorithm on the MEDS and PaSC
databases with VGG ((a-b), upper row) and LightCNN ((c-d),lower row).
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Fig. 13: Summarizing the results of the proposed and existing detection algo-
rithms on the PaSC (Left) and MEDS (Right) databases.

based subset comprises of a 50% split of distorted and undistorted faces. These
are the same sets that have been used for evaluating the performance of the
three face recognition systems. As mentioned previously, the model is trained
on a separate database which does not have any overlap with the test set.

To perform detection using a quality measure, we utilize the same training
data and SVM classification protocol but replacing the features with the qual-
ity score of each image. Table 3 summarizes the detection accuracies3 for our
proposed solution for each of the different types of data distortions on both the
MEDS and the PaSC databases. Results on the MBGC database are presented
in both seen and unseen attack protocols in Fig. 14 and Fig. 15, respectively.
It is evident that the proposed algorithm outperforms both the quality based
approaches with both the deep networks. Fig. 12 presents the detection ROCs
for the proposed algorithm. These ROCs showcase the trade-off between the
false accept rate (unperturbed image detected as adversarial) and the genuine
accept rate (adversarial image correctly classified as adversarial) as the thresh-
old of detection varies. The LightCNN network based detection, i.e., when the
LightCNN network is the target for the detection algorithm, performs much
better for the MEDS database with the sole exception of the grids distortion.
Performance on PaSC database is high for both networks but performance at
lower false accept rates is poorer for the occlusion based distortions in the case
of the LightCNN network. Quality based methods are unable to perform well
as distortion detectors. This is especially true for the PaSC database which
contains lower quality images that are misclassified by the quality based mod-
els as distorted, thereby increasing false rejects. BIQI is an algorithm that
performs quality measurement in the wavelet domain and SSEQ utilizes the
Discrete Cosine Transform (DCT) coefficients for determining the quality of
an image. Therefore, we assess that methods based on detecting noisy pat-
terns in transform domains such as wavelet and DCT are not trivial solutions
to perform detection of images distorted using the proposed methodology. We
have also conducted experiments using LBP and DSIFT as feature descriptors
and SVM as the classifier. Using the same training data and experimental pro-

3 Detection accuracies are reported at equal error rate (EER).



Detecting and Mitigating Adversarial Perturbations for Robust Face Recognition 27

tocol, we observe that the texture approaches are at least 25% less accurate
than the proposed algorithm. Furthermore, we have performed the compara-
tive experiments with neural network classifier (in place of SVM) and observe
that, across different attacks, SVM outperforms neural network classifier by
20-30%.

The proposed detection algorithm performs almost perfectly for the PaSC
database with the VGG network and maintains accuracies of 81.7-93.2% with
the LightCNN network. The lowest performance is observed on the MEDS
database (classification accuracy of 68.4% with the LightCNN network). The
lower accuracies with the LightCNN can be attributed to the smaller network
depth which results in smaller size features to be utilized by the detection
algorithm. It is to be noted that the proposed algorithm maintains high true
positive rates even at very low false positive rates across all distortions on
the three databases which is desirable when the cost of accepting a distorted
image is much higher than a false reject for the system. We also observe that
the quality based algorithms struggle with high resolution distorted images
and low resolution undistorted images, classifying them as undistorted and
distorted respectively. Besides exceptionally poor quality images that are nat-
urally quite distorted, we observe that high or low illumination results in false
rejects by the algorithm, i.e., falsely detected as distorted. This shows the scope
of further improvement and refinement in the detection methodology. This is
also another reason for lower performance with the MEDS database which
has more extreme illumination cases as compared to PaSC. We observe both
general no-reference image quality measures and face-specific quality measures
to also be insufficient for attack detection. We also test using the Viola Jones
face detector [92] and find that, on average, approximately 60% of the dis-
torted faces pass face detection. Therefore, the distorted face images cannot
be differentiated from undistorted faces on the basis of failing face detection.
We attempt to reduce the feature dimensionality to deduce the most impor-
tant features using sequential feature selection based on classification loss by a
SVM model learned on a given subset of features. For the VGG based model,
using just the top 6 features for detection, we obtain an average accuracy of
81.7% on MEDS and 96.9% on PaSC database across all distortions. If we use
only one most discriminative feature to perform detection, we obtain 79.3%
accuracy on MEDS and 95.8% on PaSC on average across all distortions. This
signifies that comparing the representations computed by the network in its
intermediate layers indeed produces a good indicator of the existence of dis-
tortions in a given image. Finally, in equation 4, in place of Canberra distance,
we experimented with other metrics such as l1, l2, and Cosine. For adversarial
perturbation detection, Canberra distance shows the best performance over
other measures. For example, on the MEDS database, it yields at least 4.6%
better detection accuracy compared to l1, l2, and Cosine measures.
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6.4 Performance on Quasi-imperceptible Attacks

In addition to the proposed adversarial attacks, we have also evaluated the
efficacy of the proposed detection methodology on four existing attacks that
utilize network architecture information for adversarial perturbation genera-
tion, i.e., DeepFool [58], Universal adversarial perturbations [57], l2 [20], and
EAD [22]. We have also compared the performance of the proposed detection
algorithm with two recent adversarial detection techniques based on adaptive
noise reduction [45] and Bayesian uncertainty [28]. The same training data and
protocol was used to train and test all three detection approaches as specified
in Section 4. The results of detection are presented in Table 3 and Fig. 13.
We observe that the proposed methodology is at least 11% better at detect-
ing DNN architecture based adversarial attacks as compared to the existing
algorithms for all cases except for detecting DeepFool perturbed images from
the MEDS database where it still outperforms the other approaches by more
than 3%. We believe that this is due to the fact that MEDS has overall higher
image quality as compared to PaSC and even the impact of these near imper-
ceptible perturbations on verification performance is minimal for the database.
Therefore, it is harder to distinguish original images from perturbed images
for these distortions for all the tested detection algorithms.

We have also performed the experiments with a distortion-invariant proto-
col and compared the performance with two existing algorithms as well. The
results of distortion-invariant protocol are given in Table 4. In these experi-
ments, the training is done on all perturbations except for one and testing is
done on the unseen perturbation not used in training. The cross-attack experi-
ment is performed using the MPIE database for training and the MEDS, PaSC,
and MBGC databases for testing so the experiment is also cross-database. Fol-
lowing this protocol, we observe that the proposed detection algorithm is still
able to achieve 63.2% accuracy on the PaSC database (Table 4) when tested
on the universal perturbation and trained on the other distortions. In com-
parison, the existing approaches (Adaptive Noise Reduction [45] and Bayesian
Uncertainty [28]) are only able to achieve a maximum of 41.5% accuracy on the
MEDS and 47.1% accuracy on the PaSC database. The proposed algorithm
outperforms these existing approaches for the other cases as well by a margin
of at least 12% on the MEDS database and 16% on the PaSC database. As
shown in Fig. 15, we observe similar results on the MBGC database on both
the 8 KB and 20 KB sets. Therefore, we assess that the proposed algorithm is
able to better generalize its detection performance even in the case of attacks
that it has never seen during training.

6.5 Results and Analysis of Mitigation Algorithm

The proposed technique of selective dropout shows interesting performance.
Fig. 16 and Table 5 present the results for the mitigation algorithm. Mitiga-
tion is a two-step process to enable better performance and computational
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Fig. 14: Performance of the proposed detection methodology (using VGG as
the target network) on MBGC 8 (Left) and MBGC 20 (Right) database in
‘intra’ attack setting.

Fig. 15: Performance of the proposed detection methodology (using VGG as
the target network) on MBGC 8 (Left) and MBGC 20 (Right) database where
all but one distortions are used for training and the remaining unseen distortion
is used for testing.

efficiency. First, using the proposed detection algorithm we perform selective
mitigation of only those images that are considered adversarial by the learned
model. Face verification results after applying the proposed mitigation algo-
rithm on the MEDS and PaSC databases are presented in Fig. 16. We can
observe that the mitigation model is able to improve the verification per-
formance with either network and bring it closer to the original curve. For
instance, as shown in table 5, in the case of the MBGC database (20 KB), the
performance drops from 88.5% to 75.9%, which is almost a 13% decrease. The
proposed mitigation algorithm is able to boost this performance back to 86.4%
which is only a 2.1% drop in performance compared to the original. Thus, we
see that even discarding a certain fraction of the intermediate network output
that is most affected by adversarial distortions, results in better recognition
than incorporating them into the obtained feature vector. We have conducted
one more study, where we have used normalized inner product for mitigation
in place of l2-norm. The results of this study are presented in Table 6. We
have observed that using normalized inner product on the larger and more
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Fig. 16: ROCs for the proposed mitigation algorithm on the (a) MEDS and
(b) PaSC databases.
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Table 4: Adversarial perturbation detection accuracy of the proposed detection
methodology (using VGG as the target network) where all but one distortions
are used for training and the remaining unseen distortion is used for testing.
The proposed entry in the distortion column refer to the results on the pro-
posed image-level and face-level distortions as detailed in Sections 3.1 and
3.2.

Distortion Algorithm
Database

MEDS PaSC

DeepFool
Proposed 56.1 50.6
Bayesian [28] 38.2 34.4
Adaptive [45] 38.9 34.1

Universal
Proposed 53.4 63.2
Bayesian [28] 40.8 46.7
Adaptive [45] 41.3 47.1

l2

Proposed 55.5 63.6
Bayesian [28] 38.6 39.2
Adaptive [45] 39.2 40.1

EAD
Proposed 59.2 62.7
Bayesian [28] 40.6 42.1
Adaptive [45] 41.5 42.2

Proposed
Proposed 58.1 53.9
Bayesian [28] 37.6 32.2

Distortions Adaptive [45] 38.9 32.8

Table 5: Mitigation results on the MEDS, PaSC, and MBGC databases. We
report GAR (%) at 1% FAR.

Database
LightCNN VGG

Original Distorted Corrected Original Distorted Corrected
PaSC 60.5 25.9 36.2 54.3 14.6 24.8
MEDS 89.3 41.6 61.3 78.4 30.5 40.6

MBGC (8 KB) 86.9 75.4 86.2 51.8 44.1 49.5
MBGC (20 KB) 88.5 75.9 86.4 52.7 44.3 50.3

challenging PaSC database in the mitigation algorithm reduces the mitigated
verification performance at equal error rate (EER) by 1.5%.

To further analyze the contributions of the two different stages of the miti-
gation algorithm, we assess the mitigation performance when only one of them
is applied in isolation. The results for this experiment are summarized in Table
7. We observe that selective dropout is comparatively more effective than just
applying the median filter, but the combined result is much better than either
of the stages on their own. We also evaluate how the two hyperparameters, η
and κ, impact the performance of the proposed algorithm. These results are
presented in Table 8. We observe that for the higher quality MEDS database,
increasing the overall number of filters dropped per layer results in improved
performance as long as η is not increased to 5. However, for the PaSC database,
increasing the number of filters dropped per layer to 0.1 (or 10%) results in a
substantial drop in performance, even lower than what median filter alone can
accomplish in the case of η=3 and η=5. We assess that higher quality faces
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Table 6: Mitigation results for DeepFool perturbation on the MEDS and PaSC
databases using L2-norm and inner-product. EER refers to Equal Error Rate.

Database GAR (%) at EER GAR (%) at 1% FAR
MEDS (Original) 93.3 78.4
MEDS (Perturbed) 93.2 78.8
MEDS (Corrected, L2-norm) 93.4 78.7
MEDS (Corrected, Inner Product) 93.8 79.8
PaSC (Original) 84.8 54.3
PaSC (Perturbed) 79.8 28.6
PaSC (Corrected, L2-norm) 79.5 28.8
PaSC (Corrected, Inner Product) 78.0 29.1

Table 7: Mitigation Results on the MEDS, PaSC, and MBGC databases
when the median filter (denoted as Median) and selective dropout (denoted
as Dropout) stages of the mitigation algorithm are applied in isolation on the
distorted data. We report GAR (%) at 1% FAR.

Database
LightCNN VGG

Median Selective Dropout Combined Median Selective Droput Combined
PaSC 28.6 31.1 36.2 19.4 21.0 24.8
MEDS 52.5 57.4 61.3 33.9 36.7 40.6

MBGC (8 KB) 77.6 81.7 86.2 46.6 48.2 49.5
MBGC (20 KB) 78.4 82.1 86.4 45.7 47.6 50.3

Table 8: Assessing the effect of the hyperparameters on the performance of
the mitigation algorithm. We report the GAR (%) at 0.01 FAR when the VGG
network is used for the MEDS and PaSC databases as the values of η and κ
are varied.

MEDS PaSC
κ=0.03 κ=0.05 κ=0.1 κ=0.03 κ=0.05 κ=0.1

η=1 34.1 35.7 36.9 19.7 20.4 20.8
η=3 38.6 40.6 41.2 22.7 24.8 19.3
η=5 40.1 39.4 37.5 20.3 19.1 18.7

provide better scope for dropping more layers and filters per layer to improve
the mitigation performance whereas the values of the parameters must be set
carefully for lower quality faces. Finally, in a cross attack mitigation setting, we
observe that the proposed mitigation algorithm can transfer to similar unseen
image processing operations (e.g. grid based to xMSB) but requires further
research in significantly dissimilar attacks.

7 Conclusion and Future Research Directions

To summarize, our work has four main contributions: (i) a framework to eval-
uate robustness of deep learning based face recognition engines, (ii) a scheme
to detect adversarial attacks on the system, (iii) methods to mitigate adver-



Detecting and Mitigating Adversarial Perturbations for Robust Face Recognition 33

sarial attacks when detected, and (iv) perform the detection and mitigation
in a cross-database and cross-attack scenario which closely resembles a live
scenario. Playing the role of an expert level adversary, we propose five classes
of image distortions in the evaluation experiment. Using an open source im-
plementation of FaceNet, i.e., OpenFace, and the VGG-Face, LightCNN, and
L-CSSE networks, we conduct a series of experiments on the publicly avail-
able PaSC, MEDS, and MBGC databases. We observe a substantial loss in
the performance of the deep learning based systems when compared with a
non-deep learning based COTS matcher for the same evaluation data. In order
to detect the attacks, we propose a network activation analysis based method
in the hidden layers of the network. When an attack is reported by this stage,
we invoke mitigation methods described in the paper to show that we can
recover from the attacks in many situations. In the future, we will build more
complex mitigation frameworks to restore to normal level of performance. Fur-
ther, there is a requirement to make the proposed defense (both detection and
mitigation) robust to unseen attacks. It is our assertion that with these find-
ings, future research can be aimed at correcting such adversarial samples and
incorporating various other kinds of countermeasures in deep neural networks
to further increase their robustness.
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