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Abstract

Face recognition systems are vulnerable to presentation
attacks such as replay and 3D masks. In the literature, sev-
eral presentation attack detection (PAD) algorithms are de-
veloped to address this problem. However, for the first time
in the literature, this paper showcases that it is possible to

“fool” the PAD algorithms using adversarial perturbations.
The proposed perturbation approach attacks the presenta-
tion attack detection algorithms at the PAD feature level via
transformation of features from one class (attack class) to
another (real class). The PAD feature tampering network
utilizes convolutional autoencoder to learn the perturba-
tions. The proposed algorithm is evaluated with respect to
CNN and local binary pattern (LBP) based PAD algorithms.
Experiments on three databases, Replay, SMAD, and Face
Morph, showcase that the proposed approach increases the
equal error rate of PAD algorithms by at least two times.
For instance, on the SMAD database, PAD equal error rate
(EER) of 20.1% is increased to 55.7% after attacking the
PAD algorithm.

1. Introduction

Face recognition (FR) systems are currently being used
in a variety of applications including surveillance, secure
access, and mobile banking. While the usage of face recog-
nition technology provides additional security compared to
pins and passwords, the security of these systems itself is
also of paramount importance. Researchers have demon-
strated that face recognition systems can be circumvented
by using the photo of genuine users [12], or by wearing a
3D mask [20]. In the real world, there had been instances
of attacks where robbers wearing 3D silicone masks tried
to fool the face recognition system. The presence of these
attacks shows the vulnerability of face recognition systems.

The attack at the sensor level (i.e., at data acquisition
level) performed using photo and mask are popularly known
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Figure 1: Diagram explaining the motivation of the proposed
research.

as presentation attacks. To secure the system from sensor and
image level attacks, researchers have proposed various attack
detection algorithms either by extracting the hand-crafted
features such as texture or motion cues or deep learning
features. The algorithms developed to secure the system
from presentation attacks are known as presentation attack
detection (PAD) algorithms. While PAD algorithms are able
to secure the system from these attacks, these algorithm
might also be sensitive towards PAD feature tampering. In
other words, an attacker can attack the PAD feature extrac-
tion and/or decision modules and the altered decision of this
sub-system can affect the performance of the whole face
recognition system. As a first ever attempt, this research
explores the possibility of tampering the PAD algorithms
themselves by attacking PAD algorithm at the feature extrac-
tion level.

In related studies, it has been shown that the deep learn-
ing algorithms are susceptible to small changes in the pixel
domain [3, 8]. Szegedy et al. [24] observe that small manip-
ulations in the pixel values can lead to its misclassification
by deep learning algorithms. Similarly, Goswami et al. [15]
also performed various kinds of image and face level attacks
to fool the deep learning based face recognition algorithms.
However, most of the existing adversarial attacks fool the
deep classifiers at the image level only. While image alter-
ations can be used to deceive a PAD algorithm, it may also
affect the performance of the face recognition algorithm. On
the other hand, attacking PAD algorithm at the PAD feature
level (not at the image level) may ensure that the input to the
face matcher is not perturbed but decision of PAD algorithm
is altered (from attacked to real). This would ensure that the
input image matches the targeted identity and can deceive
the presentation attack detector as well.



Figure 1 shows the motivation of the proposed feature
tampering algorithm. As mentioned earlier, an attacker may
attack/tamper the PAD module and change the prediction so
that the face recognition (FR) module performs the recog-
nition task and unauthorized access may be granted. In this
paper, we propose a convolutional auto-encoder based net-
work to fool both handcrafted and representation learning
based presentation attack detector so that the face recogni-
tion module can also be fooled. Extensive experiments on
multiple databases with both, ‘inter’ and ‘intra’ attacks (or
database) showcase the strength of the proposed PAD fea-
ture level attack in fooling presentation attack detectors. We
have also prepared the digital presentation attack database,
referred as Face Morph, containing 70 morphed videos.

2. Literature Review

A lot of work has been done to mislead the face recog-
nition system at sensor level using photo, replay of video,
or 3D masks as well as image level using morphing or re-
touching. Similarly, various algorithms have been proposed
to detect the presentation attacks on face recognition sys-
tem. However, to the best of our knowledge, attack on PAD
algorithm has not been performed yet.
PAD algorithms can be classified into texture, motion, and
representation learning based approaches. Texture based
algorithms such as Gaussian [27], LBP [19, 23], Gabor, His-
togram of Oriented Gradients (HOG), Wavelet+ Haralick [1]
are the most popular and provide state-of-the-art (SOTA) de-
tection performances across various types of databases. The
combination of texture and motion also shows tremendous
performance in detecting presentation attacks [5, 13].

The success of deep learning in object detection and
recognition have motivated the researchers to explore it
for presentation attack detection. Menotti et al. [21], Li
et al. [17], De Souza et al. [11], Lin et al. [18], and Man-
jani et al. [20] have proposed CNN and deep dictionary
algorithms to detect various kinds of presentation attacks
including silicone mask attacks. The details of the existing
PAD algorithm can be found in [16]. In addition, Agarwal
et al. [2] and Raghavendra et al. [22] have proposed texture-
based classification approaches for detecting digital morph
attack on face recognition. While not directly related to face
presentation attack literature, researchers have also shown
that adversarial noise can be learned using deep neural net-
works or hand-crafted to fool face recognition algorithms.
Literature related to adversarial noise detection algorithms
can be found in [4, 14].

3. Proposed Algorithm

The generic diagram of the proposed feature tampering
network is shown in Figure 2. The proposed PAD feature
tampering based attack aims to fool the presentation attack
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Figure 2: Generic diagram of the proposed feature tampering
using convolutional auto-encoder.

detector. In other words, the objective is to learn a mapping
between the feature maps of real and spoof, which are of
the same dimension. For this task, as shown in Figure 3, a
convolutional auto-encoder (CAE) network is trained on the
PAD features.

Let I be the input feature of size x× y with depth D′ and
F be the CAE filters of size m× n with depth D.

I = I1, · · ·, ID′ ,

F = F1, · · ·, FD

(1)

The output of the convolution step is defined as:

O(i, j) =

D,D′∑
d=1

m−1∑
a=0

n−1∑
b=0

Fd(a, b)Id(i+ a, j + b) (2)

The convolutional feature maps after non-linearity are
represented as: zm = σ(O). The output maps produced by
non-linear activation function (σ) followed by max pooling
layers are referred as encoding feature maps of CAE. The
decoding steps are also convolution followed by up-sampling
so that the output must be of the same size as the input.
The decoding step of CAE on the encoded feature maps
Z = {zi=1}n is:

Ĩ = ϕ(Z ∗ F ) (3)

where, ϕ and ∗ represents the up-sampling and convolution
function, respectively. The encoding-decoding in terms of
dimensions can be mathematically written as:

dim(I) = dim(decode(encode(I))) (4)

While the features of spoof data are used as input (I)
of the network, features of the real data are used for map-
ping at the output (Ĩ) of the network, and vice-versa. The
mean squared loss is minimized between the expected fea-
ture vector generated using the network and feature vectors
of real data. The encoding block of the network contains 2
convolutional layers each followed by max pooling. Sim-
ilarly, the decoding block contains 2 convolutional layers,
each followed by an upsampling layer. The task of the up-
sampling layer is to increase the size of the convolutional
feature map so that the output can map to the input feature
dimension. Each convolutional layer of the encoding and
decoding blocks contain 32 filters of size 3 × 3. The net-
work is trained using stochastic gradient descent with mean
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Figure 3: Figure illustrating the proposed feature tampering algorithm with CNN based PAD.

squared loss as the objective function. The momentum and
learning rate of the network in training is set to 0.95 and
10−5, respectively. The assumption of the proposed attack
is the knowledge of features used for PAD algorithm.

4. Databases and Evaluation Setup
To demonstrate the effectiveness of the proposed PAD fea-

ture tampering network, we have used two PAD algorithms
and multiple face databases.

4.1. PAD Algorithms

As discussed in the literature review, both handcrafted as
well as representation learning based approaches are used
for presentation attack detection. Therefore, we perform the
experiments with two algorithms: (1) CNN-based and (2)
local binary pattern-based.

CNN-based PAD Algorithm: The CNN architecture used
in this research is inspired from the architecture proposed in
Chatfield et al. [7] and Zeiler and Fergus [26]. The network
is trained on ILSVRC-2012 database with momentum using
gradient descent optimization. The hyper parameters of the
network such as momentum and learning rate are set to 0.9
and 10−2, respectively. The learning rate decreases by a fac-
tor of 10 when the decrease in the error-rate on the validation
set is very low. To limit the computational requirement, the
dimension of the last fully connected layer is set to 128. The
128 dimensional 1D feature vector computed using CNN
is converted into the shape of 16 × 8 to train the proposed
PAD feature tampering network. The support vector ma-
chine (SVM) [10] classifier is trained for presentation attack
detection on CNN features.

LBP-based PAD Algorithm [9, 19]: The traditional LBP
histogram features are computed both from the real and
spoof images. The LBP image is formed by comparing
the center pixel of each 3 × 3 grid of the image from its 8
neighborhood pixels. The final integer value at the center
location is computed by assigning the label from 0 to 28-1.

4.2. Databases

We have performed the experiments with four different
kinds of attacks: 2D photo, 2D video, silicone mask, and
digital morphing. Therefore, the databases used are: (i)
Replay-Attack [9], SMAD [20], and the proposed digital face

Figure 4: Samples images from all three databases used. (a)
Replay-Attack [9], (b) SMAD [20], and (c) MSU-MFSD
[25] and proposed face morph database. First column in each
are the real samples and last column is the attack samples.

morph database. Figure 4 shows sample images from each
category of the presentation attack databases, i.e., physical
to digital.

Replay-Attack Database: In total, the database contains
1, 200 videos out of which 200 are real access videos, and
1, 000 are print, photo, and replay attack videos. The
database is divided into three subsets: train, validation, and
test as described in the original paper. The videos are col-
lected using both high-def and mobile camera and assembled
using fixed and hand-held medium. Hence, the results are
reported individually on both the mediums, i.e., Fixed and
Hand-held.

SMAD Database: It consists of the real and 3D silicone
mask attack videos acquired from online sources. It contains
65 real and 65 mask attack videos. In this paper, the database
has been divided into training and testing sets, where the
training set has 40% videos of both classes. The remaining
60% videos of both the classes are used for evaluation.

Face Morph Database: The two above mentioned
databases are physical presentation attack databases: where
the attackers wear or show the attacking medium in front of
the camera. The other possible attack on face recognition
system is through morphing, swapping, and retouching [2,6].
To cover this spectrum of presentation attack, we have pre-
pared the face morph database using Snapchat mobile ap-
plication. In total, 70 face morphed videos are collected
using Snapchat in both constrainted and unconstrainted en-
vironment. In place of collecting the real videos, we took
real access videos from MSU-MFSD database [25] which
contains 70 real videos captured from 35 subjects using mo-



bile devices including Android phone. The real subset of
MSU database is divided into training and testing containing
videos of 15 subjects in training and videos of 20 subjects in
testing. Similarly, we divided the morph videos into training
and testing sets containing 30 and 40 videos, respectively.

4.3. Performance Metrics

The problem of presentation attack detection is a binary
classification problem. Hence, the proposed algorithm can
have two kinds of errors referred to as false acceptance rate
(FAR) and false rejection rate (FRR). The FAR and FRR
metrics corresponds to attack presentation attack classifica-
tion error rate (APCER) and bona-fide presentation attack
classification error rate (BPCER), respectively. In this paper,
the performance of the PAD algorithms and feature tamper-
ing algorithm are reported in terms of equal error rate (EER).
EER is defined as the point on receiver operating characteris-
tics (ROC) curve where FAR is equal to FRR. The higher the
difference between the EER of original tampered features,
more effective is the tampering algorithm.

5. Experimental Results and Analysis
As stated earlier, this is the first work performing an attack

to fool the face presentation attack detector. The features
are transformed in such a way that an attack performed at
the sensor level can bypass the PAD algorithms. Two kinds
of experiments are performed: intra-attack and inter-attack.
The intra-attack experiments can be defined as the setup
in which the feature tampering network is trained using
the same database as the testing database. On the other
hand, the inter-attack experiments are the ones in which
the tampering network is trained using one database (such
as Replay-Attack), but the tampering is performed on the
features computed from other databases (such as SMAD).
The inter-attack experiments are essential for real-world
evaluation where the attacking medium might be new at the
time of training. Similarly, the sensitivity of different SVM
kernels is also evaluated against feature tampering. ROC
curves for the CNN based presentation attack detection on
all three databases: Replay-Attack, SMAD, and Morph are
shown in Figures 5 and 6, respectively. The red curve which
is on the original PAD features depicts the higher detection
accuracy (i.e. lower EER). Other curves obtained on the
tampered features shows approximately random behavior of
face PAD algorithm. Next, we discuss the analysis related to
intra-attack experiments followed by the findings related to
inter-attack experiments.

Intra-Attack Results: The results of this experiment are
reported in Table 1. The presentation attack detector is first
trained using the CNN features computed on the training
set of each database. With original (un-perturbed) images,
the trained PAD algorithm with linear kernel yields an equal

(a) Fixed Set (b) Hand-held Set

Figure 5: ROC curve of face presentation attack detection
on original, intra-attack, and inter-attack tampered features
on Replay-Attack database.

(a) SMAD (b) Morph

Figure 6: ROC curve of face presentation attack detection
on original, intra-attack, and inter-attack tampered features
on SMAD and Face Morph database.

error rate (EER) of 25.1% and 19.3% on hand-held and fixed
set of Replay-Attack database, respectively. Similarly, on
Silicone Mask Attack database (i.e., SMAD) and Digital
Attack database (i.e., face morph), the SVM detector with
linear kernel yields lowest EER value of 20.1% and 2.8%,
respectively on the original feature set. On 2D attacks, the
SVM with RBF kernel yields the lowest EER value whereas
on silicone and digital morph attack linear kernel shows
the best performance. Since some PAD algorithms are hand-
crafted in nature, we also performed some of the experiments
with LBP based PAD algorithms. The results related to face
presentation attack detection using original and tampered
LBP features are summarized in Table 2. The results show
that both deep CNN features and handcrafted features based
PAD algorithms are not robust to tampering.

With feature tampering the EER(%) on digital face morph
database increased by more than 14, 10, and 16 times with
linear, polynomial, and RBF kernel-based SVM with CNN
features, respectively. Similar to the Morph digital attack
database, PAD algorithm trained for 2D and 3D presentation
attack databases shows sensitivity towards feature tampering.
EER (%) on SMAD database increases to 55.7% from 20.1%
(linear SVM) and on the Replay-Attack database (Hand-
held), it increases to 45.4% from 21.2% (polynomial SVM).



Table 1: CNN-PAD performance (EER%) with original and
proposed CAE tampered features.

Database Kernel Features DifferenceOriginal Tampered

Replay-Attack (Hand-held)
Linear 25.1 45.2 20.1
Polynomial 21.2 45.4 24.2
RBF 21.4 44.8 23.4

Replay-Attack (Fixed)
Linear 19.3 50.1 30.8
Polynomial 19.3 47.7 28.4
RBF 16.7 49.8 33.7

SMAD
Linear 20.1 55.7 35.6
Polynomial 20.3 57.5 37.2
RBF 23.7 58.1 34.4

Face Morph
Linear 2.8 41.5 38.7
Polynomial 3.5 38.0 34.5
RBF 4.0 65.5 61.5

Table 2: LBP-PAD performance (EER%) with original and
proposed CAE tampered features.

Database Kernel Features DifferenceOriginal Tampered

SMAD
Linear 25.1 46.9 21.8
Polynomial 30.8 45.9 15.1
RBF 32.9 43.6 10.7

Face Morph
Linear 0.0 86.1 86.1
Polynomial 0.1 73.4 73.3
RBF 0.0 35.7 35.7

Table 3: CNN-PAD performance (EER%) when CAE is
trained using SMAD.

Database Kernel Features
Original Tampered

Replay-Attack (Hand-held)
Linear 25.1 49.4
Polynomial 21.2 48.3
RBF 21.4 49.2

Replay-Attack (Fixed)
Linear 19.3 46.8
Polynomial 19.3 46.4
RBF 16.7 46.8

Face Morph
Linear 2.8 39.9
Polynomial 3.5 39.0
RBF 4.0 67.9

Table 4: CNN-PAD performance (EER%) when CAE is
trained using Face Morph database.

Database Kernel Features
Original Tampered

Replay-Attack (Hand-held)
Linear 25.1 50.5
Polynomial 21.2 49.5
RBF 21.4 52.0

Replay-Attack (Fixed)
Linear 19.3 49.6
Polynomial 19.3 49.3
RBF 16.7 49.8

SMAD
Linear 20.1 52.6
Polynomial 20.3 52.7
RBF 23.7 53.3

Inter-Attack Results: Tables 3, 4, 5, and 6 show the pre-
sentation attack detection performance for inter-attack exper-
iments with CNN-PAD. The results in Table 3 correspond
to when the feature tampering network is trained on 3D
mask attack database, and features of 2D attack and Morph

Table 5: CNN-PAD performance (EER%) when CAE is
trained using Replay-Attack (Fixed).

Database Kernel Features
Original Tampered

SMAD
Linear 20.1 59.6
Polynomial 20.3 56.6
RBF 23.7 53.2

Face Morph
Linear 2.8 34.9
Polynomial 3.5 35.3
RBF 4.0 62.2

Table 6: CNN-PAD performance (EER%) when CAE is
trained using Replay-Attack (Hand-held).

Database Kernel Features
Original Tampered

SMAD
Linear 20.1 58.3
Polynomial 20.3 57.8
RBF 23.7 56.2

Face Morph
Linear 2.8 40.2
Polynomial 3.5 39.8
RBF 4.0 56.5

database are tampered. Even when the network is trained on
a completely unseen attack, the feature tampering is able to
degrade the performance of the presentation attack detector.
For example, as shown in Table 3, when the convolutional-
autoencoder is trained using the training set of SMAD but
tested on Face Morph database, the EER increases from 2.8%
to 41.5% (for linear SVM). The performance degradation
of the PAD algorithm under inter-attack scenario shows the
real-world application of the proposed feature level attack.
The performance degradation across each SVM kernel on
the hand-held set of Replay-Attack database is even higher
under inter-attack network training in comparison to intra-
attack learning. Similar susceptibility of the PAD algorithm
is observed on SMAD and Morph databases when the at-
tacking network is trained on fixed and hand-held sets of the
Replay-Attack database.

Similarly, when the feature tampering algorithm is trained
on digital attack and tested on physical attack, the PAD al-
gorithm is not able to maintain the detection performance
(shown in Table 4). On SMAD database, the EER increases
approximately by the same percentage as intra-attack fea-
ture tampering. The performance degradation of the PAD
algorithm across inter and intra attacks on all the databases
shows the generalizability of the proposed tampering algo-
rithm. We have also noticed that the distribution of the
feature vectors changes significantly after alteration, thus
leads to mis-classification by the PAD algorithm.

6. Conclusion
In this paper, we showcase that the protector can be de-

ceived. The proposed feature tampering approach utilizes



convolutional auto-encoder based network to learn the per-
turbation for fooling face PAD algorithms. The proposed
attack is evaluated across multiple attacks and databases in-
cluding 2D photo, silicone mask, and digital morphing. The
proposed approach, both in intra and inter attack scenarios,
shows the susceptibility of the PAD algorithms. Apart from
this, a new digital morph database using the Snapchat mo-
bile application is prepared. In future, efforts can be made
to increase the robustness of the face presentation attack
detection algorithms against PAD feature tampering.
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