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ABSTRACT
Deep neural networks are generally trained using large amounts of
data to achieve state-of-the-art accuracy in many possible computer
vision and image analysis applications ranging from object recog-
nition to natural language processing. It is also claimed that these
networks can memorize the data which can be extracted from the
network parameters such as weights and gradient information. The
adversarial vulnerability of the deep networks is usually evaluated
on the unseen test set of the databases. If the network is memoriz-
ing the data, then the small perturbation in the training image data
should not drastically change its performance. Based on this as-
sumption, we first evaluate the robustness of deep neural networks
on small perturbations added in the training images used for learning
the parameters of the network. It is observed that, even if the network
has seen the images it is still vulnerable to these small perturbations.
Further, we propose a novel data augmentation technique to increase
the robustness of deep neural networks to such perturbations.

Index Terms— Deep Networks, Robustness, Adversarial Per-
turbations, Data Augmentation Technique, Object Recognition

1. INTRODUCTION

The success of deep neural networks in image recognition is par-
tially attributed to the large databases containing millions of images.
These networks are trained using millions of images and assumed to
memorize the training data. The problem of memorization can be
seen from the point of overfitting [1]. Such memorization or overfit-
ting of data leads to the leakage of private data used in the training
[2, 3]. While the vulnerability of deep networks against perturbation
[4, 5] or image manipulation [6] have been widely explored now, the
perturbation is usually added in the unseen testing images. How-
ever, in this research, we pose a question, while these deep neural
networks overfitted on the training data are these networks still vul-
nerable against small perturbations in seen training images?

Roy et al. [6] have shown that degradations such as the incor-
poration of image noises can lead to drop in the recognition per-
formance of convolutional neural networks (CNNs). Similarly, in
literature, several adversarial attacks are proposed which can induce
the noise to fool the CNNs without utilizing the network information
[7, 8, 9, 10]. While it is observed that deep networks are highly vul-
nerable but it is to be noted that these images on which adversarial
noise is added are unseen to the network. In this research, we have
first applied the image noise on the training images itself to evalu-
ate whether the network still robust or not. Using the experiments on
multiple object recognition databases it is seen that, even the network
has seen the images while learning its parameter can misclassify the
same images when comes with small perturbations.

Considering the vulnerability of pre-trained CNNs using the
small image perturbations and to advance the current defenses
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Table 1: Configuration of the custom CNNs.

CNN Configuration

Custom-1
(F-MNIST)

Conv(5× 5× 32), ReLU, MaxPool(3× 3)
Conv(8× 8× 64), ReLU, AvgPool(3× 3),
Conv(8× 8× 64), ReLU, AvgPool(3× 3),
Fully Connected(64), ReLU,
Fully Connected(10), SoftMax

Custom-2
(F-MNIST)

Conv(8× 8× 64), ReLU, Conv(6× 6× 128),
ReLU, Conv(5× 5× 128), ReLU,
Fully Connected(10), SoftMax

Custom
(CIFAR)

Conv(5× 5× 32), ReLU, MaxPool(3× 3),
Conv(8× 8× 64), ReLU, AvgPool(3× 3),
Conv(8× 8× 64), ReLU, AvgPool(3× 3),
Fully Connected(64), Fully Connected(10),
SoftMax

[11, 12, 13, 14], we have proposed a data augmentation technique to
improve their robustness against learning-based adversarial pertur-
bations. Fig. 1 illustrates the key idea of this research: (a) shows the
traditional training of a CNN classifier and during real-world eval-
uated (part (b)), it can lead to an incorrect prediction on the test set
because of the existence of multiple anomalies such as adversarial
perturbation. Part (c) focuses on finding the singularities through
seen training images but slightly distorted due to image noise and
see how robust is the network even on seen images. Based on the
vulnerability of the classifier on the image classes, data augmenta-
tion has been performed in (d) to retrain the sensitive model (M1).
The final output is the retrained model.

2. VULNERABILITIES ON SEEN IMAGES

In this section, we perform the ablation study to analyze the robust-
ness of classifiers if they have seen the noise in the training images.
The analysis corresponds to point (a) and (c) of Fig. 1. The exper-
iments are performed using multiple databases including CIFAR10
and Imagenette, and CNN architectures including VGG and ResNet.
The vulnerability analysis is conducted using the Gaussian noise,
which refers to a black-box setting where no network information
has been utilized to fool them. The Gaussian with mean (µ) 0 and
varying standard deviation (σ) has been applied and their classifica-
tion is observed against multiple databases and networks.

CIFAR10 [15] is one of the most popular object recognition
databases containing low-resolution object images belonging to 10
classes. Three different CNN architectures are trained on the train-
ing set of the database namely VGG [16], ResNet [17], and Cus-
tom CNN (Table 1). The selected architectures represent the broad
category of networks in terms of the number of layers and type of
connections such as sequential and skip identity. Each network is
trained using ‘Adam’ optimizer with a batch size of 32.
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Fig. 1: Schematic diagram of the proposed research (train→ find singularities→ finetune for robustness).

Table 2: Sensitivity analysis (%) on CIFAR10 database using train-
ing noisy images. On the training set, the VGG, ResNet, and cus-
tom model yields 88.57%, 98.68%, and 78.45% recognition perfor-
mance, respectively. ↓ −x% shows the ∼ x% drop in performance
when the noisy training images are given for classification.

Noise VGG ResNet Custom
GN01 74.94 ↓ −13% 24.97 ↓ −74% 58.63 ↓ −20%

GN05 42.94 ↓ −45% 14.53 ↓ −84% 28.23 ↓ −50%

GN08 33.59 ↓ −55% 13.72 ↓ −85% 22.41 ↓ −56%

The sensitivity analysis on the CIFAR10 database is provided in
Table 2. The original models yield higher recognition performance
on clean training images, however, it is found that even if the net-
work has seen the images while training, it can still misclassify them.
Out of all the networks used on CIFAR10, the ResNet model is found
to be highly susceptible against noisy variation in the images. Even
in the presence of as low as Gaussian noise of σ = 0.01 leads to
a drop of 74%. The difference between the ResNet model from the
other models is the skip connection. It seems the skip connect which
helps in better gradient flow also leads to higher sensitivity.

Compared to different networks, VGG is found to be the least
sensitive. The primary difference between the VGG model and the
custom model apart from being the deeper layers is the size of the
convolutional kernels. The VGG model uses small spatial kernels of
size 3 × 3, whereas, in the custom model higher kernel sizes 5 × 5
and 8 × 8 are used for parameter learning. The lower kernel size
is exposed to lesser pixels which might be of the same distribution,
whereas, the higher kernel can lead to visualizing the different local
field information. Hence, end in a higher vulnerability.

The analysis on Fashion MNIST (F-MNIST) and Imagette1 a
subset of ImageNet are reported in Fig. 2. On F-MNIST two cus-
tom models are developed (Table 1), whereas, on Imagenette, the
VGG16 model has been trained. The custom models on F-MNIST
yield at-least 89.76% recognition accuracy which drops down to
46% through the modification of training data through small pertur-
bations. Interestingly, both the custom models have shown similar
sensitivity in terms of the reduction of recognition performance. The
prime difference between the custom models is the number of filters,
their spatial dimension, pooling layers, and the use of the FC layer
as a feature extractor in custom-1.

Similar to the previous two databases which are of low resolu-
tion, a network trained on a large resolution database namely Im-
ageNette which is a subset of ImageNet [18] is found vulnerable.
However, as compared to low-resolution object images of CIFAR-
10, the network is found less vulnerable and need a slightly higher
noise magnitude. It shows that the higher the amount of information
available for feature extraction and parameter learning, the better the
robustness of the network. The VGG-16 network shows more than
97% recognition performance on the training set, which drops to
56.95% when Gaussian noise with σ = 0.08 is used. The relative
reduction in the performance of VGG on CIFAR-10 and ImageNette
are ∼ 55% and ∼ 40% on GN08, respectively.

We believe this information can help the research community
in developing the classification network by being aware of the vul-
nerability of the individual constituents such as filter size and type
of connection, (e.g. skip connection, pooling layer, fully connected
layer).

1https://github.com/fastai/imagenette



Fig. 2: Sensitivity analysis on Fashion-MNIST and Imagenette database using the recognition performance on training noisy images. On both
databases, each network including shallow and deep networks shows a significant reduction in performance.

3. PROPOSED DEFENSE FOR DEPLOYABLE ROBUST
MODEL

Through the analysis in the previous section, we have proposed
a novel technique of data augmentation for possible adversarial
robustness. The proposed technique is inspired by the algorithm
termed as ‘mixup’ [19]. The mixup algorithm combines the two
data points and corresponding labels through the mixing coeffi-
cients. The data points are randomly selected from the training
images of the database. The intuition of using the mixup is to reduce
the drawbacks of memorization of data, adversarial examples, and
promote linear behavior among the data points. Mathematically, the
mixup algorithm can be written as follows:

x̃ = λx1 + (1− λ)x2
ỹ = λy1 + (1− λ)y2

(1)

where, λ is the mixup coefficient derived from the ‘Beta’ distribution
with parameter (α, α). x̃ is the mixup data point and ỹ is the corre-
sponding class label of the point. For merging the class labels in
this fashion, the labels are first converted into one-hot encoding. x1
and x2 are the two data points randomly selected from the training
images and y1 and y2 are their corresponding original labels. The
primary drawback of the above mixup algorithm is that first the data
points are randomly selected and hence can be of the same class.
Secondly, it does not utilize any class information, in which a noisy
variant of an image can be misclassified. To counter these limita-
tions, we have proposed an extension of this algorithm by utilizing
the class information in which a noisy variant of an image can be
misclassified. Mathematically, the proposed ‘intelligent’ mixup can
be written as:

x̃ = λx1 + (1− λ)x′1
ỹ = λy1 + (1− λ)y′1

(2)

where, x′1 is the noisy variant of x1. y1 is the original class label of
x1 and y′1 is the class label of x′1 predicted by the classifier. We hy-
pothesize that the classes that generally lie close to each other in the
feature space get highly misclassified as compared to the ones which
lie far from each other. Apart from getting advantages of traditional
‘mixup’, this label-aware mixup can help in learning the generalized
features grouping similar classes close to each other and different
classes lying far in the feature space. We have experimentally found
and used α = 8.0 for mixing up the data points.

Table 3: Adversarial robustness (%) of VGG network on CIFAR-10
dataset.

Attack Undefended Proposed Defense with
GN05 GN08

CW 10.20 74.65 71.60
DeepFool 10.85 33.50 30.80
FGSM 18.35 62.00 61.75
40-IFGSM 16.25 59.20 60.50
100-PGD 16.10 61.55 61.85
No attack (clean) 83.91 85.20 83.15

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first describe the ingredients used to perform the
experiments such as database, attacks, and classifiers. Later, the re-
sults corresponding to vulnerable and defended networks using the
proposed ‘intelligent’ mixup generation are provided.

4.1. Experimental Setup

In this research, we have used Fashion-MNIST (F-MNIST) [20] and
CIFAR-10 databases. These datasets are popular object recogni-
tion databases containing 50k and 60k training images, respectively.
The noisy variant of the clean training images of each database is
generated using two standard deviations of Gaussian noise such as
σ = 0.05 and σ = 0.08. The noisy variant is referred to as GN05
and GN08 according to the σ used for manipulation.

We have used VGG-16 network [16] for recognition on CIFAR-
10 dataset, while the custom-2 model described in Table 1 is used
for F-MNIST dataset. The networks are pretrained using Adam op-
timizer, the batch size is set to 32, and the learning rate is set adap-
tively with an initial value of 0.0001. Once the noisy variants are
obtained, they are used for classification using the trained classifiers,
and the label given by the classifier on the noisy variant is used for
the proposed ‘intelligent’ mixup. After the generation of mixup im-
ages, they are augmented to the original training set of the database
and used for finetuning the adversarially vulnerable model for 30
epochs.

Multiple complex adversarial attack algorithms are used for gen-
erating the adversarial examples varying from optimization based at-



Table 4: Adversarial robustness (%) of custom-2 model on F-
MNIST.

Attack Undefended Proposed Defense with
GN05 GN08

CW 6.45 71.54 72.87
DeepFool 12.09 33.73 33.76
FGSM 9.85 26.20 26.51
40-IFGSM 11.41 31.57 28.85
100-PGD 3.01 21.51 13.22
No attack (clean) 91.49 90.34 90.46

tacks such as C&W l2 [21] and DeepFool [22] and gradient-based
attacks such as single step FGSM [23], k1-FGSM [24], and k2-
PGD [25]. The standard attack strength parameter is used on each
database, i.e., ε = 0.03 is used on the color images and ε = 0.3 on
gray-scale images. For iterative FGSM attacks 40 steps (i.e., k1=40)
and for iterative PGD 100 steps (i.e., k2=100) are used for adver-
sarial examples. We have used the standard attacks setting unless
otherwise specified.

4.2. Results and Observations

The adversarial robustness performance on CIFAR-10 is reported in
Table 3. Adversarial robustness refers to the improvement in the
classification accuracy on the adversarial examples. From the point
of adversarial attacks, the network is found to be highly vulnera-
ble against optimization-based attacks as compared to both single
and multi-step gradient based attacks. The CW l2 optimization at-
tack which reduces the performance of the VGG network to 10.20%
is found to be least effective when the proposed defense is applied
on the VGG network. Apart from that, it is found in the literature
while the adversarial defense algorithms can provide robustness to
the networks on adversarial examples but significantly reduces the
performance on clean images. However, the proposed defense is not
only able to increase the robustness of the network, it is able to retain
the performance on clean images or improve it.

In contrast to the findings on color object images of CIFAR-10
dataset, on grayscale images the proposed defense, with higher σ,
yields better robustness on optimization attacks such as CW l2 and
DeepFool. While on iterative gradient variants, augmentation with
lower σ shows higher robustness. However, in both the cases, the
proposed defense is found significantly effective in handling adver-
sarial images. The adversarial vulnerability and robustness results
are corresponding to the point (b) and (e) in Fig. 1, where the unde-
fended and final robust model is used for evaluation, respectively.

5. CONCLUSION

In the context of increasing the robustness of the CNN classifiers
against adversarial examples, this paper presents two key contribu-
tions. First, we have experimentally shown that the networks that
have even seen the images at the time of training are vulnerable
when small perturbation is added. It is to be noted that this noise
may not utilize any network information which adversarial attacks
typically utilize while crafting the perturbation. In the experiments,
we have observed that even black-box noise can significantly reduce
the performance of deep networks. It is also found that the skip
connection-based ResNet architecture posses higher vulnerability as
compared to a sequentially connected network. Next, by utilizing

the incorrectly predicted label of the networks on the noisy vari-
ant of the training images, a novel ‘intelligent’ mixup approach is
proposed. The proposed mixup based data augmentation technique
can increase the adversarial robustness of the undefended networks
trained using clean images only.
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